研究生: |
吳政宇 Wu, Cheng-Yu |
---|---|
論文名稱: |
利用濺鍍製程優化鋰離子電池的介面以提升下一代全固態電池的適用性 Optimizing interface of lithium-ion battery through sputtering fabrication to enhance the applicability of next-generation all-solid-state batteries |
指導教授: |
杜正恭
Duh, Jenq-Gong |
口試委員: |
吳志明
Wu, Jyh-Ming 蕭立殷 Hsiao, Li-Yin 邱國峰 Chiu, Kuo-Feng 呂承璋 Lu, Cheng-Zhang |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 145 |
中文關鍵詞: | 鋰電池 、薄膜 、正極 、負極 、固態電解質 |
外文關鍵詞: | Lithium ion batteries, Thin Film, Cathode, Anode, Solid electrolyte |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近十年來,鋰離子電池已廣泛應用於3C產品,智能手機和電動汽車,其主要為電化學電池,主要由陰極,陽極和有機電解質組成。為了滿足電動汽車(EV)的應用,固態電池的新概念已成為必不可少的主題,並且對於擴大鋰離子電池的應用範圍變得越來越重要。其中,薄膜電極是一種有利的方法,其可以作為具有特定區域和平面幾何之電極表面以探索活性固體及固態電解質相互作用的電化學過程。本研究的目的是開發固態薄膜鋰離子電池並表徵電化學性能。
在陽極材料方面,通過在環境溫度下在Cu微錐陣列(CMA)上的兩步DC濺射合成氮化矽塗覆的矽(N-Si)。研究了具有不同厚度氮化物層的N-Si陽極的電化學性質。在200次循環之後,通過較薄的氮化物層塗層增強循環穩定性,因為氮化矽膜被覆蓋的Si薄膜轉化為Li3N.由於氮化矽膜導致的低電荷轉移電阻,這使N-Si陽極可以在高達10C的高速率下循環,其組合可以有效地承受高電流,從而提高循環穩定性。
在陰極材料,利用直流電(DC)系統成功地沉積Pt(111)緩衝層,並透過射頻(RF)磁控濺射技術在緩衝層上製備了具有c軸(003)優選方向的高織構 LiNi0.5Mn0.3Co0.2O2薄膜。 此外,LiNi0.5Mn0.3Co0.2O2薄膜也沉積在Ti緩衝襯底上。基底結構對薄膜結構和的影響研究並比較了沉積在這兩種(Pt和Ti)襯底上的LiNi0.5Mn0.3Co0.2O2薄膜的電化學性能。這些金屬作為緩衝層薄膜沉積在不銹鋼基底上,提供更好的導電性和結晶度,有利於循環穩定性。結果表明,Pt / LiNi0.5Mn0.3Co0.2O2薄膜電極在環境溫度下具有84mAh / g的放電容量,並且在200個循環內顯示出穩定的循環性能。
此外,於本論文中還研究了固態電解質和離子水性粘合劑以解決固體電解質/電極界面之間的高界面電阻。固體電解質在從當前液體電化學到固態的過渡階段中受到越來越多的關注。在改性之後,清楚地揭示了具有固態聚合物電解質膜和離子水性粘合劑之LiFePO4半電池的性能。
在這篇論文中。揭示了關鍵問題以及對電極/固體電解質界面工程影響的基本理解。這些發展為滿足下一代高功率鋰離子電池的要求提供了巨大的潛力。
Lithium-ion battery has been widely applied in 3C products, smart phone and electric vehicle over the last decade. The lithium-ion battery works as an electrochemical cell, mainly consisting of a cathode, an anode, and an organic electrolyte. In order to meet the application of electric vehicles (EVs), a new concept of solid-state batteries has become an essential subject and is becoming increasingly vital to scale up the application scope for lithium-ion battery. Thin-film electrodes are the enabling approach because they can serve as a simplified model with a specific area and flat geometry electrode surface to explore the intrinsic electrochemical process of active solid–electrolyte solution interactions. The aim of this study is to develop the solid-state thin-film lithium-ion battery and to characterize the electrochemical performance.
For anode materials, Silicon nitride coated silicon (N-Si) has been synthesized by two- step DC sputtering on Cu Micro-cone arrays (CMAs) at ambient temperature. The electrochemical properties of N-Si anodes with various thickness of nitride layer are investigated. After 200 cycles, the cycling stability is enhanced via thinner nitride layer coating as silicon nitride films are converted to Li3N with covered Si thin films. These N- Si anodes can be cycled under high rates up to 10 C due to low charge transfer resistance resulted from silicon nitride films. This indicates that the combination of silicon nitride and silicon can effectively endure high current and thus enhance the cycling stability.
For cathode materials, the highly textured LiNi0.5Mn0.3Co0.2O2 thin films with c-axis (003) preferred orientation were successfully fabricated onto the in situ-annealed Pt (111) reconstructed buffer substrate by virtue of direct-current (DC) and radio frequency (RF) magnetron sputtering technologies. The LiNi0.5Mn0.3Co0.2O2 thin films were also deposited onto the Ti buffer substrate. The effects of the substrate texture on the structural and
electrochemical properties of the LiNi0.5Mn0.3Co0.2O2 thin film deposited on these two (Pt and Ti) substrates have been investigated and compared. These metals are deposited on the stainless-steel substrate as buffer layer thin film, providing the better conductivity and crystallinity to benefit the cycling stability. The results demonstrate that the Pt/LiNi0.5Mn0.3Co0.2O2 thin film electrode exhibits a discharge capacity of 84 mAh/g at ambient temperature and shows a stable cyclic performance within 200 cycles.
Besides, the solid-state electrolyte and ionic aqueous binder were also investigated to solve the high interfacial resistance between the solid electrolyte /electrode interface. Solid electrolytes are receiving increasing interest in the transition stage from current liquid electrochemistry to solid-state. After the modification, the performance of the LiFePO4 half-cell with the solid-state polymer electrolyte membranes and ionic aqueous binder are clearly revealed.
In this dissertation. Unveiling the critical issues and the fundamental understanding the impacts of the electrodes/solid electrolyte interface engineering has been demonstrated. These developments provide considerable potential for meeting the requirements of next- generation high-power Li-ion batteries.
[1] H.D. Yoo, E. Markevich, G. Salitra, D. Sharon, D. Aurbach, Materials Today, 17 (2014) 110-121.
[2] S. Chu, A. Majumdar, Nature, 488 (2012) 294-303.
[3] M. Broussely, G. Archdale, Journal of Power Sources, 136 (2004) 386-394.
[4] M.A. J.M. Tarascon, NATURE, 414 (2001) 359 - 367.
[5] Z. Yang, J. Zhang, M.C. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Chem Rev, 111 (2011) 3577-3613.
[6] E. Serrano, G. Rus, J. García-Martínez, Renewable and Sustainable Energy Reviews, 13 (2009) 2373-2384.
[7] M. Winter, B. Barnett, K. Xu, Chem Rev, 118 (2018) 11433-11456.
[8] F.G.K. Gilbert N. Lewis, J Am Chem Soc, 35 (1913) 340 - 344.
[9] M.-H. Ryou, Y.M. Lee, Y. Lee, M. Winter, P. Bieker, Advanced Functional Materials, 25 (2015) 834-841.
[10] M.S. WHITTINGHAM, 20 (1975) 575 - 583.
[11] M.S. Whittingham, Prog. Solid State Chem., 12 (1978) 41 - 99.
[12] J.I. GregoryC.Farrington, SCIENCE, 204 (1979) 4400.
[13] B.M.L.F. Rao, R. W.; Christopher, H. A. , J. Electrochem. Soc. , 124 (1977) 1490 − 1492.
[14] M.A.H. Py, R. R., Can. J. Phys., 61 (1982) 76 − 84.
[15] J.A. Read, A.V. Cresce, M.H. Ervin, K. Xu, Energy Environ. Sci., 7 (2014) 617-620. [16] K.J. Mizushima, P. C.; Wiseman, P. J.; Goodenough, J. B. , Mater. Res. Bull. , 15 (1980) 783−789.
[17] K.J. Mizushima, P. C.; Wiseman, P. J.; Goodenough, J. B. , Solid State Ionics 3-4 (1981) 171−174.
[18] M.M.D. Thackeray, W. I. F.; Bruce, P. G.; Goodenough, J. B., Mater. Res. Bull., 18 (1983) 461−472.
[19] M.M.J. Thackeray, P. J.; De Picciotto, L. A.; Bruce, P. G.; Goodenough, J. B. , Mater. Res. Bull. , 19 (1984) 179−187.
[20] K.S.N. A. K. Padhi, J. B. Goodenough J. Electrochem. Soc., 144 (1997).
[21] K.N. Padhi, K. S.; Goodenough, J. B., J. Electrochem. Soc., 144 (1997) 1188−1194.
134
[22] J.r.O.B. Martin Winter, * Michael E. Spahr, and Petr Novμk, Advanced materials, 10 (1998).
[23] P.G. Bruce, Solid State Ionics, 179 (2008) 752-760.
[24] J.B. Goodenough, Y. Kim, Chemistry of Materials, 22 (2010) 587-603.
[25] J.B. Goodenough, K.S. Park, J Am Chem Soc, 135 (2013) 1167-1176.
[26] G. E.Peled, G.Ardel, J.Electrochem.Soc., 144 (1997) L208 - L209.
[27] M. Winter, Z. Phys. Chem., 223 (2009) 1395–1406.
[28] B.N. Loeffler, D. Bresser, S. Passerini, M. Copley, Johnson Matthey Technology Review, 59 (2015) 34-44.
[29] T.D. Hatchard, J.R. Dahn, Journal of The Electrochemical Society, 151 (2004) A838. [30] M. Yamada, A. Ueda, K. Matsumoto, T. Ohzuku, Journal of The Electrochemical Society, 158 (2011) A417.
[31] M.N. Obrovac, L. Christensen, Electrochemical and Solid-State Letters, 7 (2004) A93. [32] M.N. Obrovac, L.J. Krause, Journal of The Electrochemical Society, 154 (2007) A103. [33] N. Nitta, F. Wu, J.T. Lee, G. Yushin, Materials Today, 18 (2015) 252-264.
[34] S. Sharifi-Asl, F.A. Soto, A. Nie, Y. Yuan, H. Asayesh-Ardakani, T. Foroozan, V. Yurkiv, B. Song, F. Mashayek, R.F. Klie, K. Amine, J. Lu, P.B. Balbuena, R. Shahbazian- Yassar, Nano Letters, 17 (2017) 2165-2171.
[35] D. Lepage, C. Michot, G. Liang, M. Gauthier, S.B. Schougaard, Angew Chem Int Ed Engl, 50 (2011) 6884-6887.
[36] C. Gong, F. Deng, C.-P. Tsui, Z. Xue, Y.S. Ye, C.-Y. Tang, X. Zhou, X. Xie, J. Mater. Chem. A, 2 (2014) 19315-19323.
[37] B. Lung-Hao Hu, F.Y. Wu, C.T. Lin, A.N. Khlobystov, L.J. Li, Nat Commun, 4 (2013) 1687.
[38] Y. Zou, X. Yang, C. Lv, T. Liu, Y. Xia, L. Shang, G.I. Waterhouse, D. Yang, T. Zhang, Adv Sci (Weinh), 4 (2017) 1600262.
[39] L. Qiu, Z. Shao, D. Wang, W. Wang, F. Wang, J. Wang, Carbohydr Polym, 111 (2014) 588-591.
[40] T. Zhang, J.T. Li, J. Liu, Y.P. Deng, Z.G. Wu, Z.W. Yin, D. Guo, L. Huang, S.G. Sun, Chem Commun (Camb), 52 (2016) 4683-4686.
[41] Q. Wu, S. Ha, J. Prakash, D.W. Dees, W. Lu, Electrochimica Acta, 114 (2013) 1-6. [42] V.H. Nguyen, W.L. Wang, E.M. Jin, H.-B. Gu, Applied Surface Science, 282 (2013) 444-449.
[43] Z.P. Cai, Y. Liang, W.S. Li, L.D. Xing, Y.H. Liao, Journal of Power Sources, 189 (2009) 547-551.
[44] K.F. Chiu, K.M. Lin, H.C. Lin, W.Y. Chen, D.T. Shieh, Journal of The Electrochemical Society, 154 (2007) A433.
[45] K.F. Chiu, H.C. Lin, K.M. Lin, T.Y. Lin, D.T. Shieh, Journal of The Electrochemical Society, 153 (2006) A920.
[46] J.P. Carmo, R.P. Rocha, A.F. Silva, L.M. Goncalves, J.H. Correia, Procedia Chemistry, 1 (2009) 453-456.
[47] M. Koo, K.I. Park, S.H. Lee, M. Suh, D.Y. Jeon, J.W. Choi, K. Kang, K.J. Lee, Nano Lett, 12 (2012) 4810-4816.
[48] A. Patil, V. Patil, D. Wook Shin, J.-W. Choi, D.-S. Paik, S.-J. Yoon, Materials Research Bulletin, 43 (2008) 1913-1942.
[49] R. Miyazaki, N. Ohta, T. Ohnishi, I. Sakaguchi, K. Takada, Journal of Power Sources, 272 (2014) 541-545.
[50] S.-H. Su, K.-F. Chiu, H.-J. Leu, Thin Solid Films, 572 (2014) 15-19.
[51] L. Baggetto, N.J. Dudney, G.M. Veith, Electrochimica Acta, 90 (2013) 135-147.
[52] C. Sun, J. Liu, Y. Gong, D.P. Wilkinson, J. Zhang, Nano Energy, 33 (2017) 363-386. [53] C.L. Chen, K.F. Chiu, Y.R. Chen, C.C. Chen, H.C. Lin, H.Y. Chiang, Thin Solid Films, 544 (2013) 182-185.
[54] J.B. Bates, N.J. Dudney, B. Neudecker, A. Ueda, C.D. Evans, Solid State Ionics, 135 (2000) 33-45.
[55] G.R.G. J.B.Bates, N.J.Dudney, C.F.Luck, XiaohuaYu, Solid State Ionics, 70-71 (1994).
[56] K.F. Chiu, K.M. Lin, H.C. Lin, C.H. Hsu, C.C. Chen, D.T. Shieh, Journal of The Electrochemical Society, 155 (2008) A623.
[57] S. Rousselot, M. Gauthier, D. Mazouzi, B. Lestriez, D. Guyomard, L. Roué, Journal of Power Sources, 202 (2012) 262-268.
[58] M. Graczyk-Zajac, G. Mera, J. Kaspar, R. Riedel, Journal of the European Ceramic Society, 30 (2010) 3235-3243.
[59] Z. Wen, K. Wang, L. Chen, J. Xie, Electrochemistry Communications, 8 (2006) 1349- 1352.
[60] R. Yi, S. Chen, J. Song, M.L. Gordin, A. Manivannan, D. Wang, Advanced Functional Materials, 24 (2014) 7433-7439.
[61] N. Nakamura, K. Hirao, Y. Yamauchi, Surface and Coatings Technology, 186 (2004) 339-345.
[62] H. Nara, T. Yokoshima, T. Momma, T. Osaka, Energy & Environmental Science, 5 (2012) 6500.
[63] U. Kasavajjula, C. Wang, A.J. Appleby, Journal of Power Sources, 163 (2007) 1003- 1039.
[64] T. Hang, D. Mukoyama, H. Nara, T. Yokoshima, T. Momma, M. Li, T. Osaka, Journal of Power Sources, 256 (2014) 226-232.
[65] Y. Qin, F. Li, X. Bai, X. Sun, D. Liu, D. He, Materials Letters, 138 (2015) 104-106. [66] H. Wu, Y. Cui, Nano Today, 7 (2012) 414-429.
[67] M. Zhou, F. Pu, Z. Wang, T. Cai, H. Chen, H. Zhang, S. Guan, Phys Chem Chem Phys, 15 (2013) 11394-11401.
[68] R.C. de Guzman, J. Yang, M. Ming-Cheng Cheng, S.O. Salley, K.Y.S. Ng, Journal of Materials Chemistry A, 2 (2014) 14577.
[69] S.L. Katar, D. Hernandez, A. Biaggi Labiosa, E. Mosquera-Vargas, L. Fonseca, B. Weiner, G. Morell, Electrochimica Acta, 55 (2010) 2269-2274.
[70] R. Yi, J. Zai, F. Dai, M.L. Gordin, D. Wang, Nano Energy, 6 (2014) 211-218.
[71] R. Yi, F. Dai, M.L. Gordin, H. Sohn, D. Wang, Advanced Energy Materials, 3 (2013) 1507-1515.
[72] Y.Q. Zhang, X.H. Xia, X.L. Wang, Y.J. Mai, S.J. Shi, Y.Y. Tang, C.G. Gu, J.P. Tu, Journal of Power Sources, 213 (2012) 106-111.
[73] W. Zhang, H. Cao, X. Feng, A. Hu, M. Li, Journal of Alloys and Compounds, 538 (2012) 144-152.
[74] Z. Du, S. Zhang, Y. Liu, J. Zhao, R. Lin, T. Jiang, Journal of Materials Chemistry, 22 (2012) 11636.
[75] X. Qian, T. Hang, H. Nara, T. Yokoshima, M. Li, T. Osaka, Journal of Power Sources, 272 (2014) 794-799.
[76] Z. Wei, R. Li, T. Huang, A. Yu, Journal of Power Sources, 238 (2013) 165-172.
[77] T. Hang, H. Nara, T. Yokoshima, T. Momma, T. Osaka, Journal of Power Sources, 222 (2013) 503-509.
[78] K.-F. Chiu, S.-H. Su, H.-J. Leu, C.-Y. Wu, Surface and Coatings Technology, 267 (2015) 70-74.
[79] H.-G. Tan, J.-G. Duh, Journal of Power Sources, 335 (2016) 146-154.
[80] F.F. Cao, J.W. Deng, S. Xin, H.X. Ji, O.G. Schmidt, L.J. Wan, Y.G. Guo, Adv Mater, 23 (2011) 4415-4420.
[81] Y. Fan, Q. Zhang, Q. Xiao, X. Wang, K. Huang, Carbon, 59 (2013) 264-269.
[82] T. Karabacak, Y.P. Zhao, G.C. Wang, T.M. Lu, Physical Review B, 66 (2002).
[83] A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, Nat Mater, 9 (2010) 353-358.
[84] Z. Wu, S. Ji, J. Zheng, Z. Hu, S. Xiao, Y. Wei, Z. Zhuo, Y. Lin, W. Yang, K. Xu, K. Amine, F. Pan, Nano Letters, 15 (2015) 5590-5596.
[85] G. Cherkashinin, M. Motzko, N. Schulz, T. Späth, W. Jaegermann, Chemistry of Materials, 27 (2015) 2875-2887.
[86] J. Xu, F. Lin, M.M. Doeff, W. Tong, Journal of Materials Chemistry A, 5 (2017) 874- 901.
[87] F. Fu, Y. Yao, H. Wang, G.-L. Xu, K. Amine, S.-G. Sun, M. Shao, Nano Energy, 35 (2017) 370-378.
[88] H. Yim, W. Yeon Kong, Y. Chul Kim, S.-J. Yoon, J.-W. Choi, Journal of Solid State Chemistry, 196 (2012) 288-292.
[89] J. Xie, N. Imanishi, T. Zhang, A. Hirano, Y. Takeda, O. Yamamoto, Journal of Power Sources, 195 (2010) 5780-5783.
[90] K. Okada, T. Ohnishi, K. Mitsuishi, K. Takada, AIP Advances, 7 (2017) 115011. [91] Z. Li, S. Yasui, S. Takeuchi, A. Creuziger, S. Maruyama, A.A. Herzing, I. Takeuchi, L.A. Bendersky, Thin Solid Films, 612 (2016) 472-482.
[92] P. Jeevan Kumar, K. Jayanth Babu, O.M. Hussain, Materials Chemistry and Physics, 143 (2014) 536-544.
[93] S. Iwasaki, T. Hamanaka, T. Yamakawa, W.C. West, K. Yamamoto, M. Motoyama, T. Hirayama, Y. Iriyama, Journal of Power Sources, 272 (2014) 1086-1090.
[94] G. Tan, F. Wu, J. Lu, R. Chen, L. Li, K. Amine, Nanoscale, 6 (2014).
[95] J. Deng, L. Xi, L. Wang, Z. Wang, C.Y. Chung, X. Han, H. Zhou, Journal of Power Sources, 217 (2012) 491-497.
[96] C.-Y. Wu, Q. Bao, Y.C. Lai, X. Liu, Y.-C. Lu, H. Tao, J.-G. Duh, Nano Energy, 60 (2019) 784-793.
[97] C. Jacob, T. Lynch, A. Chen, J. Jian, H. Wang, Journal of Power Sources, 241 (2013) 410-414.
[98] C. Jacob, J. Jian, Y. Zhu, Q. Su, H. Wang, J. Mater. Chem. A, 2 (2014) 2283-2289.
[99] Z. Qi, J. Jian, J. Huang, J. Tang, H. Wang, V.G. Pol, H. Wang, Nano Energy, 46 (2018) 290-296.
[100] D. Kumar, S.A. Hashmi, Journal of Power Sources, 195 (2010) 5101-5108.
[101] A. Manuel Stephan, K.S. Nahm, Polymer, 47 (2006) 5952-5964.
[102] Z. Xue, D. He, X. Xie, Journal of Materials Chemistry A, 3 (2015) 19218-19253. [103] W. Li, Y. Pang, J. Liu, G. Liu, Y. Wang, Y. Xia, RSC Advances, 7 (2017) 23494- 23501.
[104] A.R. Polu, H.-W. Rhee, International Journal of Hydrogen Energy, 42 (2017) 7212- 7219.
[105] J.H. Ahn, G.X. Wang, H.K. Liu, S.X. Dou, Journal of Power Sources, 119-121 (2003) 422-426.
[106] S. Das, A. Ghosh, AIP Advances, 5 (2015) 027125.
[107] C.W. Lin, C.L. Hung, M. Venkateswarlu, B.J. Hwang, Journal of Power Sources, 146 (2005) 397-401.
[108] W. Wieczorek, D. Raducha, A. Zalewska, J.R. Stevens, The Journal of Physical Chemistry B, 102 (1998) 8725-8731.
[109] J.-H. Choi, C.-H. Lee, J.-H. Yu, C.-H. Doh, S.-M. Lee, Journal of Power Sources, 274 (2015) 458-463.
[110] S. Hao, H. Zhang, W. Yao, J. Lin, Journal of Power Sources, 393 (2018) 128-134. [111] H. Huo, N. Zhao, J. Sun, F. Du, Y. Li, X. Guo, Journal of Power Sources, 372 (2017) 1-7.
[112] H. Park, K. Jung, M. Nezafati, C.S. Kim, B. Kang, ACS Appl Mater Interfaces, (2016).
[113] S. Chen, C. Wu, L. Shen, C. Zhu, Y. Huang, K. Xi, J. Maier, Y. Yu, Advanced Materials, 29 (2017) 1700431.
[114] Y. Deng, C. Eames, B. Fleutot, R. David, J.-N. Chotard, E. Suard, C. Masquelier, M.S. Islam, ACS Applied Materials & Interfaces, 9 (2017) 7050-7058.
[115] F. Zheng, M. Kotobuki, S. Song, M.O. Lai, L. Lu, Journal of Power Sources, 389 (2018) 198-213.
[116] M.A. Evstigneeva, V.B. Nalbandyan, A.A. Petrenko, B.S. Medvedev, A.A. Kataev, Chemistry of Materials, 23 (2011) 1174-1181.
[117] V. Kumar, A. Gupta, S. Uma, Dalton Trans, 42 (2013) 14992-14998.
[118] Y.L. Ni'mah, M.-Y. Cheng, J.H. Cheng, J. Rick, B.-J. Hwang, Journal of Power Sources, 278 (2015) 375-381.
[119] W. Zhang, J. Nie, F. Li, Z.L. Wang, C. Sun, Nano Energy, 45 (2018) 413-419. [120] B. Chen, Z. Huang, X. Chen, Y. Zhao, Q. Xu, P. Long, S. Chen, X. Xu, Electrochimica Acta, 210 (2016) 905-914.
[121] Y. Tian, F. Ding, H. Zhong, C. Liu, Y.-B. He, J. Liu, X. Liu, Q. Xu, Energy Storage Materials, 14 (2018) 49-57.
[122] S. Yu, R.D. Schmidt, R. Garcia-Mendez, E. Herbert, N.J. Dudney, J.B. Wolfenstine, J. Sakamoto, D.J. Siegel, Chemistry of Materials, 28 (2015) 197-206.
[123] J. Zhang, N. Zhao, M. Zhang, Y. Li, P.K. Chu, X. Guo, Z. Di, X. Wang, H. Li, Nano Energy, 28 (2016) 447-454.
[124] L. Chen, Y. Li, S.-P. Li, L.-Z. Fan, C.-W. Nan, J.B. Goodenough, Nano Energy, 46 (2018) 176-184.
[125] C. Wang, X.-W. Zhang, A.J. Appleby, Journal of The Electrochemical Society, 152 (2005) A205.
[126] Q. Liu, Z. Geng, C. Han, Y. Fu, S. Li, Y.-b. He, F. Kang, B. Li, Journal of Power Sources, 389 (2018) 120-134.
[127] F. Langer, I. Bardenhagen, J. Glenneberg, R. Kun, Solid State Ionics, 291 (2016) 8- 13.
[128] Y. Zhao, C. Wu, G. Peng, X. Chen, X. Yao, Y. Bai, F. Wu, S. Chen, X. Xu, Journal of Power Sources, 301 (2016) 47-53.
[129] X. Tao, Y. Liu, W. Liu, G. Zhou, J. Zhao, D. Lin, C. Zu, O. Sheng, W. Zhang, H.W. Lee, Y. Cui, Nano Lett, 17 (2017) 2967-2972.
[130] Z. Zhang, T. Zeng, Y. Lai, M. Jia, J. Li, Journal of Power Sources, 247 (2014) 1-8. [131] A. Guerfi, M. Kaneko, M. Petitclerc, M. Mori, K. Zaghib, Journal of Power Sources, 163 (2007) 1047-1052.
[132] K.-F. Chiu, S.H. Su, H.-J. Leu, Y.S. Chen, Electrochimica Acta, 117 (2014) 134-138. [133] J.-C. Tsai, F.-Y. Tsai, C.-A. Tung, H.-W. Hsieh, C.-C. Li, Journal of Power Sources, 241 (2013) 400-403.
[134] W.-Y. Chou, Y.-C. Jin, J.-G. Duh, C.-Z. Lu, S.-C. Liao, Applied Surface Science, 355 (2015) 1272-1278.
[135] J. Chong, S. Xun, H. Zheng, X. Song, G. Liu, P. Ridgway, J.Q. Wang, V.S. Battaglia, Journal of Power Sources, 196 (2011) 7707-7714.
[136] J. Song, M. Zhou, R. Yi, T. Xu, M.L. Gordin, D. Tang, Z. Yu, M. Regula, D. Wang, Advanced Functional Materials, 24 (2014) 5904-5910.
[137] X. Zhang, G. Pan, G. Li, J. Qu, X. Gao, Solid State Ionics, 178 (2007) 1107-1112.
[138] J. Yang, R.C. de Guzman, S.O. Salley, K.Y.S. Ng, B.-H. Chen, M.M.-C. Cheng, Journal of Power Sources, 269 (2014) 520-525.
[139] N. Suzuki, R.B. Cervera, T. Ohnishi, K. Takada, Journal of Power Sources, 231 (2013) 186-189.
[140] S.-K. Jung, H. Gwon, J. Hong, K.-Y. Park, D.-H. Seo, H. Kim, J. Hyun, W. Yang, K. Kang, Advanced Energy Materials, 4 (2014).