簡易檢索 / 詳目顯示

研究生: 曾詩婷
Zeng, Shih-Ting
論文名稱: 半指派問題敏感度分析
Advanced Sensitivity Analysis of the Semi-assignment Problem
指導教授: 溫于平
Wen, Ue-Pyng
口試委員: 廖崇碩
Liao, Chung-Shou
翁偉泰
Weng, Wei-Tai
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 37
中文關鍵詞: 半指派問題敏感度分析退化
外文關鍵詞: Semi-assignment problem, sensitivity analysis, degeneracy
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是探討半指派問題的敏感度分析。在實務上,公司內部的人力配置,常會有相似的工作或任務需求,因此,配置人力時就會有分組作業的情況產生。此時,傳統的一對一指派特性,就不適用於此情況。而半指派分配的模型為將每個人指派到各組,此模型適用於具有相同工作或任務需求的分配上。另外,由於半指派分配的高度退化特性,導致於傳統的敏感度分析方法,在要求最佳解基底不變下所求出的敏感度分析擾動範圍,並不符合實際狀況。
    此論文所提出的半指派分派敏感度分析則考慮到退化解所造成的退化基底問題。為了克服此問題,我們在尋求敏感度分析範圍時,只須要求正值基底不變,而退化基解可以改變。如此一來,基底的退化解可以選擇退出,替代新的退化解進入,而不改變最佳指派的狀態。因此當遇到有退化解時,使用此方法,可以獲得較傳統敏感度分析的範圍更寬敞的結果。本論文中,我們提出了一演算法來以得各成本係數的敏感度分析範圍。我們也進一步使用了一個例子來解釋此演算法的流程。最後,亦提供數據分析的結果以顯示此演算法的效率。

    關鍵字:半指派問題,敏感度分析,退化


    This thesis concentrates on sensitivity analysis of the semi-assignment problem (AP). Since there are identical tasks or works to be assigned in a company, the semi-AP can be more practical as a planning tool then classic assignment problem. Due to the high degeneracy of the semi-AP, traditional sensitivity analysis, which decides the perturbed range where the current optimal basis remains optimal, is impractical.
    Advanced sensitivity analysis of the semi-AP we proposed in this study is concerned with obtaining the perturbed range of cost coefficients that can be perturbed without the current positive variable set changing, but allowing the change of the degenerate basic variables or move to other extreme point when multiple optimal solution occurs. Concerning high degeneracy of the semi-AP, we can broaden the perturbed range by allowing that basis changing, as long as maintaining the same positive variable set of the current problem. In this thesis we propose an algorithm for determining the perturbed range of the assigned and unassigned cell. An illustrative example is presented in order to demonstrate the procedure of the proposed algorithm. Computational results will also provide to demonstrate the efficiency of the proposed algorithm.

    Keywords:
    Semi-assignment problem, sensitivity analysis, degeneracy.

    摘要 i ABSTRACT ii 謝詞 iii TABLE OF CONTENT iv LIST OF FIGURE vi LIST OF TABLE vii 1. INTRODUCTION 1 1.1 Motivation 1 1.2 Research framework 3 2. LITERATURE REVIEW 4 2.1 The semi-assignment problem 4 2.2 Sensitivity analysis of the assignment problem 5 2.3 Labeling algorithms 7 3. ADVANCED SENSITIVITY ANALYSIS ALGORITHM 9 3.1 Preliminary 9 3.2 Type II sensitivity analysis of the semi-AP 12 3.3 The proposed algorithm 14 Table 3.1 Format of a semi-AP simplex tableau 14 4. ILLUSTRATIVE EXAMPLE 20 Table 4.1 The optimal semi-AP simplex tableau 21 4.1 Illustrative example for unassigned cell sensitivity analysis 21 Table 4.2 The optimal tableau after perturbing an unassigned cell 25 4.2 Illustrative example for assigned cell sensitivity analysis 26 Table 1.3 The optimal tableau after perturbing an assigned cell 28 5. COMPUTATIONAL RESULTS 29 5.1 The comparison between Type I and Type II ranges 29 Table 2.1 Perturbation ranges of ∆cij 29 5.2 The results of test problems 30 Table 5.2 The average computational time (min) of test problems 31 Table 5.3 The standard deviation of computational times of test problems 32 6. CONCLUSION 33 REFERENCES 34 Appendix A: The computational times in different problem size 36

    Abara, J., “Applying integer linear programming to the fleet assignment problem”, Interfaces, 19, 20-28, (1989).
    Balinski, M. L. and R. E. Gomory, “A primal method for the assignment and transportation problems”, Management Science, 10, 578-593, (1964).
    Barr, R., F. Glover and D. Klingman, “A new alternating basis algorithm for semi-assignment networks”, Computers and Mathematical Programming, Gaithersburg, 223-232, (1976) .
    Bazaraa, M.S., J.J. Jarvis and H.O. Sherali, “ Linear programming and network flowers”, 4th edition, Wiley-Interscience, New York, (2010)
    Cook, T.G. and R.A. Russell, “ Introduction to management science”, Prentice Hall, New Jersey, (1977)
    Dijkstra, E.W, “A note on two problems in connection with graphs”, Numerical Mathematic, 1, 269-271, (1959).
    Duffuaa, S.O. and M.S. Ghassab, “A successive shortest path algorithm for the semi-assignment problem”, Technical Report, (1994).
    Euge ́nia, C. M., J. Clìmaco, J. Figueira, E. Martins and J. L. Santos , “Solving bicriteria 0–1 knapsack problems using a labeling algorithm”, Computers and Operations Research, 30, 1865–1886, (2003).
    Gal, T., “Shadow prices and sensitivity analysis in linear programming under degeneracy -state-of-the-art-survey”, OR Spektrum, 8, 59-71, (1986).
    Hadigheh, A.G and T. Terlaky, “Sensitivity analysis in linear optimization: invariant support set intervals”, European Journal of Operational Research, 169, 1158–1175, (2006).
    Jansen, B., J. J. de Jong, C. Roos and T. Terlaky,”Sensitivity analysis in linear programming – just be careful!”, European Journal of Operational Research, 101, 15–28, (1997).
    Kennington, J. and Z. Wang, “A shortest augmenting path algorithm for the semi-assignment problem”, Operations Research, 40, 178-187, (1992).
    Kuhn, H.W., “The hungarian method for the assignment problem”, Naval Research Logistics Quarterly, 2, 83–97, (1955).
    Lin, C.-J., “A labeling algorithm for the sensitivity ranges of the assignment problem”, Applied Mathematical Modeling, 35, 4852–4864, (2011).
    Lin, C.-J. and U.-P. Wen, “Sensitivity analysis of the optimal assignment”, European Journal of Operational Research, 149, 35–46, (2003).
    Munkres, J., “Algorithms for the assignment and transportation problems”, Journal of the Society for Industrial and Applied Mathematics, 5, 32-38, (1957).
    Namkoong, S., J.-H. Rho and J.-U. Choi, “Development of the tree-based link labeling algorithm for optimal path-finding in urban transportation networks”, Mathematical and Computational Modeling, 27, 51-65, (1998).
    Pentico, D.W., “Assignment problems: a golden anniversary survey”, European Journal of Operational Research, 176, 774–793, (2007).
    Toth, P and D.Vigo, “The vehicle routing problem”, Society Industrial and Applied Mathematics, Philadelphia, (2002).
    Volgenant, A., “Linear and semi-assignment problems: A Core Oriented Approach”, Computers & Operations Research, 23, 917-932, (1996).
    Votaw, D.F., A. Orden, “The personnel assignment problem”, Symposium on Linear Inequalities and Programming, US Air Force, 10, 155–163, (1952).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE