研究生: |
林佑 Lin, Yu |
---|---|
論文名稱: |
銅奈米線之應用:透明導電電極與近紅外光之電漿加熱效應 Applications of copper nanowires: transparent conductive electrode and near-infrared light induced collective plasmonic heating phenomena |
指導教授: |
段興宇
Tuan, Hsing-Yu |
口試委員: |
曾院介
Yuan-Chieh Tseng 湯學成 Shiue-Cheng Tang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 光熱效應 、銅奈米線 、透明導電電極 |
外文關鍵詞: | photothermal effect, copper nanowires, transparent conductive electrode |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇研究中,細、長且分散良好的銅奈米線可藉由晶種促進生長機制於有機相中得到,並以快速、低成本且簡單的噴霧式(spray)製程將銅奈米線溶液塗佈成大面積導電薄膜。銅奈米線平均長度約為38.7 μm,平均直徑約為49 nm,長寬比可達790為相當高的一個值,對於奈米線導電膜來講,奈米線長度越長有利於片電阻的下降。利用此方法所合成出的奈米銅線搭配噴塗技術,我們製備銅線導電電極的面積可由2×2 cm2放大至6×6 cm2¬、6.5×10 cm2甚至6.5×25 cm2,並利用銅線導電電極作為觸碰開關開啟各式裝置如LED陣列、電腦等,我們也利用銅奈米線的光熱效應,將奈米線織布作為反應器,以808 nm連續式雷射在不同功率下控制織布的溫度以生成不同奈米材料,並已成功合成出多種材料。
In this study, thin, long, and well-dispersed copper nanowires were obtained via the seed-mediated growth in an organic solvent-based synthesis. The mean length and diameter of nanowire are about 38.7 μm and 49 nm with a high aspect ratio of 790. Large area conducting films was prepared by a fast, low-cost, simple spray deposition of copper nanowires dispersions. These wires were used for nanowire conducting films since their relatively long length is advantage in lowering the sheet resistance. As-synthesized copper nanowires dispersion was sprayed to create highly transparent conductive electrode from 2×2 cm2 to 6×6 cm2, 6.5×10 cm2 even 6×25 cm2. We can use copper nanowires conducting electrode as a touch switch for much equipment such as light LED array, turn on a computer, etc. We also exploit the photothermal effect of copper nanowires, using copper nanowires fabric as a reactor to do some nanomaterials synthesis. Fabric was illuminated by an 808 nm cw laser with different power to control the fabric temperature in order to do different nanomaterials synthesis. Many materials have been successfully synthesized.
1.Hecht, D. S.; Hu, L. B.; Irvin, G., Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures. Adv Mater 2011, 23 (13), 1482-1513.
2.Bädeker, K., Über die elektrische Leitfähigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen. Annalen der Physik 1907, 327 (4), 749-766.
3.R.B.H. Tahar, T. B., Y. Ohya, Y. Takahashi, J. Appl. Phys. 1998, 83, 2631.
4.Iijima, S., Helical Microtubules of Graphitic Carbon. Nature 1991, 354 (6348), 56-58.
5.Liu, X. L.; Han, S.; Zhou, C. W., Novel nanotube-on-insulator (NOI) approach toward single-walled carbon nanotube devices. Nano Lett 2006, 6 (1), 34-39.
6.Zhang, M.; Fang, S. L.; Zakhidov, A. A.; Lee, S. B.; Aliev, A. E.; Williams, C. D.; Atkinson, K. R.; Baughman, R. H., Strong, transparent, multifunctional, carbon nanotube sheets. Science 2005, 309 (5738), 1215-1219.
7.Hu, L. B.; Hecht, D. S.; Gruner, G., Carbon Nanotube Thin Films: Fabrication, Properties, and Applications. Chem Rev 2010, 110 (10), 5790-5844.
8.Mirri, F.; Ma, A. W. K.; Hsu, T. T.; Behabtu, N.; Eichmann, S. L.; Young, C. C.; Tsentalovich, D. E.; Pasquali, M., High-Performance Carbon Nanotube Transparent Conductive Films by Scalable Dip Coating. Acs Nano 2012, 6 (11), 9737-9744.
9.Hecht, D. S., et al., High conductivity transparent carbon nanotube films deposited from superacid. Nanotechnology 2011, 22 (7), 075201.
10.Pereira, L. F. C.; Rocha, C. G.; Latge, A.; Coleman, J. N.; Ferreira, M. S., Upper bound for the conductivity of nanotube networks. Appl Phys Lett 2009, 95 (12).
11.Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-669.
12.Sun, D. M.; Liu, C.; Ren, W. C.; Cheng, H. M., A Review of Carbon Nanotube- and Graphene-Based Flexible Thin-Film Transistors. Small 2013, 9 (8), 1188-1205.
13.Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 2004, 108 (52), 19912-19916.
14.Choucair, M.; Thordarson, P.; Stride, J. A., Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nanotechnol 2009, 4 (1), 30-33.
15.Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett 2009, 9 (1), 30-35.
16.Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; Kim, Y. J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J. H.; Hong, B. H.; Iijima, S., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 2010, 5 (8), 574-578.
17.Zheng, Q.; Ip, W. H.; Lin, X.; Yousefi, N.; Yeung, K. K.; Li, Z.; Kim, J.-K., Transparent Conductive Films Consisting of Ultralarge Graphene Sheets Produced by Langmuir–Blodgett Assembly. Acs Nano 2011, 5 (7), 6039-6051.
18.Ghosh, D. S.; Martinez, L.; Giurgola, S.; Vergani, P.; Pruneri, V., Widely transparent electrodes based on ultrathin metals. Opt. Lett. 2009, 34 (3), 325-327.
19.Hu, L.; Wu, H.; Cui, Y., Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bulletin 2011, 36 (10), 760-765.
20.Kang, M.-G.; Park, H. J.; Se Hyun, A.; Xu, T.; Guo, L. J., Toward Low-Cost, High-Efficiency, and Scalable Organic Solar Cells with Transparent Metal Electrode and Improved Domain Morphology. Selected Topics in Quantum Electronics, IEEE Journal of 2010, 16 (6), 1807-1820.
21.Guo, L. J., Nanoimprint lithography: Methods and material requirements. Adv Mater 2007, 19 (4), 495-513.
22.Catrysse, P. B.; Fan, S. H., Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices. Nano Lett 2010, 10 (8), 2944-2949.
23.Zhu, S. W.; Gao, Y.; Hu, B.; Li, J.; Su, J.; Fan, Z. Y.; Zhou, J., Transferable self-welding silver nanowire network as high performance transparent flexible electrode. Nanotechnology 2013, 24 (33).
24.Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P., Solution-processed metal nanowire mesh transparent electrodes. Nano Lett 2008, 8 (2), 689-692.
25.Garnett, E. C.; Cai, W. S.; Cha, J. J.; Mahmood, F.; Connor, S. T.; Christoforo, M. G.; Cui, Y.; McGehee, M. D.; Brongersma, M. L., Self-limited plasmonic welding of silver nanowire junctions. Nat Mater 2012, 11 (3), 241-249.
26.Lee, J.; Lee, I.; Kim, T. S.; Lee, J. Y., Efficient Welding of Silver Nanowire Networks without Post-Processing. Small 2013, 9 (17), 2887-2894.
27.Wang, X.; Zhi, L. J.; Mullen, K., Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 2008, 8 (1), 323-327.
28.Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y., Evaluation of solution-processed reduced graphene oxide films as transparent conductors. Acs Nano 2008, 2 (3), 463-470.
29.Pham, V. H.; Cuong, T. V.; Hur, S. H.; Shin, E. W.; Kim, J. S.; Chung, J. S.; Kim, E. J., Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon 2010, 48 (7), 1945-1951.
30.Maity, S.; Bochinski, J. R.; Clarke, L. I., Metal Nanoparticles Acting as Light-Activated Heating Elements within Composite Materials. Adv Funct Mater 2012, 22 (24), 5259-5270.
31.Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A., Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006, 128 (6), 2115-2120.
32.El-Sayed, I. H.; Huang, X.; El-Sayed, M. A., Surface Plasmon Resonance Scattering and Absorption of anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics: Applications in Oral Cancer. Nano Lett 2005, 5 (5), 829-834.
33.Li, J.; Han, J. S.; Xu, T. S.; Guo, C. R.; Bu, X. Y.; Zhang, H.; Wang, L. P.; Sun, H. C.; Yang, B., Coating Urchinlike Gold Nanoparticles with Polypyrrole Thin Shells To Produce Photothermal Agents with High Stability and Photothermal Transduction Efficiency. Langmuir 2013, 29 (23), 7102-7110.
34.Tian, Q.; Tang, M.; Sun, Y.; Zou, R.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J., Hydrophilic Flower-Like CuS Superstructures as an Efficient 980 nm Laser-Driven Photothermal Agent for Ablation of Cancer Cells. Adv Mater 2011, 23 (31), 3542-3547.
35.Chen, Z.; Tian, Q.; Song, Y.; Yang, J.; Hu, J., PEG-mediated solvothermal synthesis of NaYF4:Yb/Er superstructures with efficient upconversion luminescence. Journal of Alloys and Compounds 2010, 506 (2), L17-L21.
36.Fedoruk, M.; Meixner, M.; Carretero-Palacios, S.; Lohmüller, T.; Feldmann, J., Nanolithography by Plasmonic Heating and Optical Manipulation of Gold Nanoparticles. Acs Nano 2013, 7 (9), 7648-7653.
37.Wang, C.; Ranasingha, O.; Natesakhawat, S.; Ohodnicki, P. R.; Andio, M.; Lewis, J. P.; Matranga, C., Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2. Nanoscale 2013, 5 (15), 6968-6974.
38.Walker, J. M.; Gou, L. F.; Bhattacharyya, S.; Lindahl, S. E.; Zaleski, J. M., Photothermal Plasmonic Triggering of Au Nanoparticle Surface Radical Polymerization. Chem Mater 2011, 23 (23), 5275-5281.
39.Ye, E. Y.; Zhang, S. Y.; Liu, S. H.; Han, M. Y., Disproportionation for Growing Copper Nanowires and their Controlled Self-Assembly Facilitated by Ligand Exchange. Chem-Eur J 2011, 17 (11), 3074-3077.
40.Seager, C. H.; Pike, G. E., Percolation and conductivity: A computer study. II. Physical Review B 1974, 10 (4), 1435-1446.
41.Bergin, S. M.; Chen, Y. H.; Rathmell, A. R.; Charbonneau, P.; Li, Z. Y.; Wiley, B. J., The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 2012, 4 (6), 1996-2004.
42.Roper, D. K.; Ahn, W.; Hoepfner, M., Microscale Heat Transfer Transduced by Surface Plasmon Resonant Gold Nanoparticles. The Journal of Physical Chemistry C 2007, 111 (9), 3636-3641.
43.Mafuné, F.; Kohno, J.-y.; Takeda, Y.; Kondow, T.; Sawabe, H., Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution. The Journal of Physical Chemistry B 2000, 104 (39), 9111-9117.