簡易檢索 / 詳目顯示

研究生: 蘇凱爾
Kale, Balaji Sopanrao
論文名稱: 以過渡金屬催化新合成之高度官能化有機化合物骨架
Transition Metal Catalyzed New Transformations for the Synthesis of Highly Functionalized Organic Frameworks.
指導教授: 劉瑞雄
Liu, Rai-Shung
口試委員: 侯敦仁
Hou, Duen-Ren
彭之皓
Peng, Chi-How
蔡易州
Tsai, Yi-Chou
莊士卿
Chuang, Shih-Ching
謝仁傑
Hsieh, Jen-Chieh
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 543
中文關鍵詞: 金金屬催化過度金屬
外文關鍵詞: gold catalyst, transition metal
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文介紹了使用金或銠金屬鹽開發新的有機合成轉化反應。這些金屬的運用易取得的基質能夠溫和地,有選擇性地和有效地氧化轉化成有用的含氮,氧和硫的複雜有機分子。為了能夠更了解此文,以下將其分成四個章節。

    第一章討論了利用1,6-烯炔和芳香基重氮酮經過兩個新的反應建構環戊烯核心骨架,其中一開始1,6-烯炔與重氮化合物進行金催化環化反應,接著是銠催化的骨架重排,得到3-環丙基-2-烯-1-酮(3-cyclopropyl-2-en-1-ones)。在大多數情況下,銠催化的反應會得到環戊烯衍生物,而幾個正烷基或鄰位取代的苯基酮得到七元氧雜環。一個推測的機構為這兩種不同的產物提供了合理解釋。

    第二章論述了金金屬催化6-丙二烯-1-炔與N-羥基苯胺,提供了反選擇性的熱穩定苯二氮平-4-酮;這些反選擇產物很容易在矽膠管柱中異構化為同向異構物。反應機構可能包含一開始硝酮/丙二烯的環加成,得到的中間體骨架接著進行重排。

    第三章描述了1,4-二炔-3-醇(1,4-diyn-3-ols)與異噁唑或苯並異噁唑之間的金金屬催化[4+1]-增環反應,得到吡咯衍生物。此反應的化學選擇性通過異噁唑在較少立體阻礙的炔烴上的初步攻擊來控制,而形成金卡賓,進一步誘導第二個炔烴基團的1,2-遷移。1,4-二炔-3-醇,異噁唑甚至苯並異噁唑廣泛的官能基容忍度凸顯了反應效用。

    第四章介紹利用金金屬催化將{鄰 - (炔基)苯基炔丙基}矽醚與亞硝基芳烴進行氧化環化反應用以建構官能化的萘醛衍生物,同時亞硝基進行親核攻擊形成金卡賓中間體,進一步轉化為硝酮,然後脫水形成醛基。該合成方法與合適範圍的鄰 - (炔烴)苯基炔丙基}矽醚和硝基芳烴相容,更進一步強調了其合成效用。


    This dissertation describes development of new synthetic organic transformations by using gold or Rhodium metal salts. The use of these metals enables mild, selective and efficient oxidative transformations of readily available substrates to wide range of synthetically useful nitrogen, oxygen and sulfur containing complex organic molecules. For better understanding the thesis is divided into four chapters.
    The first chapter deals with the construction of cyclopentene cores from 1,6-enynes and aryl diazo ketones through two new reaction sequences involving initial gold-catalyzed cyclization of 1,6-enynes with diazo species, followed by rhodium-catalyzed skeletal rearrangement of the resulting 3-cyclopropyl-2-en-1-ones. In most instances the rhodium-catalyzed reactions afforded cyclopentene derivatives whereas several n-alkyl- or ortho-substituted phenyl ketones delivered seven-membered oxacycles. A plausible mechanism provides rationales for these two distinct products.

    The second chapter deals with the Gold-catalyzed reactions of 6-allen-1-ynes with N-hydroxyanilines afford thermally stable benzoazepin-4-ones in anti-selectivity; these anti-configured products are easily isomerized to their syn-isomers on a silica column. The mechanism of reactions likely involves initial nitrone/allene cycloadditions, followed by skeletal rearrangement of resulting intermediates.

    The third chapter describes the gold-catalyzed [4 + 1]- annulation reactions between 1,4-diyn-3-ols and isoxazoles or benzisoxazoles to yield pyrrole derivatives. The reaction chemoselectivity is controlled by an initial attack of an isoxazole at a less hindered alkyne to form gold carbenes, further inducing a 1,2-migration of a second alkyne group. A broad substrate scope of 1,4-diyn-3-ols, isoxazoles and even benzisoxazoles highlighted the reaction utility.

    The fourth chapter presents Gold-Catalyzed Oxidative cyclization of {o-(Alkyne)phenyl propargyl} Silyl Ethers with Nitrosoarenes to construct functionalized naphthaldehyde derivatives with nucleophilic attack of nitroso forming in situ gold-carbrne intermediate further convert to nitrone and followed by dehydrate to form formyl group. This synthetic method is compatible with reasonable range of o-(Alkyne)phenyl propargyl} Silyl Ethers and Nitroarenes, thus further highlighting its synthetic utility.

    中文摘要 III Abstract IV Acknowledgement VI Contents VIII List of Schemes XI List of Tables XIII List of Figures XIV List of Publications XV Abbreviations XVI Chapter I: A Sequential Route to Cyclopentenes From 1,6-Enynes and Diazo Ketones through Gold and Rhodium Catalysis Introduction 2 Results and Discussion 13 Conclusion 30 Experimental Procedure 31 Spectral Data 32 Reference 63 1H and 13C NMR spectra 70 Chapter II: Gold-Catalyzed N,O Functionalizations of 6 Allenyl-1-ynes with N Hydroxyanilines To Construct Benzo[b] azepin-4-one CoresIntroduction 208 Results and Discussion 217 Conclusion 229 Experimental Procedure 229 Spectral Data 233 Reference 242 1H and 13C NMR spectra 245Chapter III: Gold-catalyzed [4+1]-Annulation Reactions between 1,4-Diyn-3- ols and Isoxazoles to Construct a Pyrrole Core. Introduction 289Results and Discussion 298 Conclusion 312 Experimental Procedure 312 Spectral Data 313 Reference 333 1H and 13C NMR spectra 336 Chapter IV: Gold-Catalyzed Oxidative cyclization of {o-(Alkyne)phenyl propargyl} Silyl Ethers with Nitrosoarenes to construct functionalized naphthaldehyde core. Introduction 422 Results and Discussion 428 Conclusion 443 Experimental Procedure 444 Spectral Data 446 Reference 463 1H and 13C NMR spectra 466List of Schemes Chapter I Scheme 1: Metal-mediated carbene transfer from diazo compounds 3 Scheme 2: Formation of gold carbenes from diazo compounds 4 Scheme 3: Gold-catalyzed cyclopropanation of enynes with alkenes 5 Scheme 4: Gold-catalyzed amination of enynes 6 Scheme 5: Gold-catalyzed intermolecular addition of carbonyl compounds 7 to 1,6-enynes Scheme 6: Gold-catalyzed diastereoselective [2+2+3] cycloaddition 8 Scheme 7: Gold-catalyzed [2+2+1] annulations 1,6-enynes 9 Scheme 8a: Ruthenium catalyzed selective transformations of enynes with diazoalkanes into alkenylbicyclo[3.1.0]hexanes 10 Scheme 8b: Proposed mechanism for the transformations of enynes with diazoalkanes into alkenylbicyclo[3.1.0]hexanes 11 Scheme 9: Scheme 9. Reactions of Diazo ester and other 1,6-enynes 28 Scheme 10: Rationales for two distinct products. 29 Chapter II Scheme 1: Cyclization of the propargylic N-hydroxylamines to 2,3-dihydroisoxazoles 209 Scheme 2: 1,3-Pyrrolidinones and nitrones from N-sulfonylhydroxylamines 210 Scheme 3: Catalyst-controlled synthesis of pyrroles and nitrones 210 Scheme 4: Stereoselective synthesis of N-hydroxypyrrolines, dihydroisoxazoles, and dihydro-1,2-oxazines and catalytic cycle for the formation of cissubstituted dihydroisoxazoles 212Scheme 5: Gold-catalyzed formation of indoles via O-alkenyl-N-arylhydroxylamines213 Scheme 6: Scheme 6. Gold-catalyzed formation of N-protected 2-alkenylindoles 214 Scheme 7: Gold-catalyzed [2+2+1] annulations 1,6-enynes 215 Scheme 8: Chemoselectivities between allenes and nitrones 216 Scheme 9: Data to confirm the anti-selectivity 227 Scheme 10: A postulated mechanism 228 Chapter III Scheme 1: Gold-catalyzed [3+2], [3+3] and [4+1] annulations 289 Scheme 2: Formalization of difference in N-oxide attack and O- and N-attack of isoxazoles on gold activated alkyne 290 Scheme 3: Rh-catalyzed ring opening reaction of isoxazoles with diazo compounds 291 Scheme 4: Rh-catalyzed ring expansion reaction of isoxazoles with vinyldiazo carboxylates to give 1,4-dihydropyridine 292 Scheme 5: Gold-catalyzed [3+2] cycloaddition of ynamides with isoxazoles 293 Scheme 6: Gold-catalyzed [3+2] cycloaddition of oxazolidinone ynamides with isoxazoles 295 Scheme 7: A postulated mechanism for 2,4-dicarbonyl pyrroles 296 Scheme 8: A plausible mechanism for imidazo[1,2-a]pyridines 297 Scheme 9: A Plausible Mechanism 310 Chapter IV Scheme 1: Catalytic 1,2-iminonitronation of phenyl propiolates with nitrosobenzene 424 Scheme 2: Gold(I)-catalyzed oxoiminations and aminohydroxylations 425 Scheme 3: Oxidative [3+2] cycloadditions for 1,5-enynes 426 Scheme 4: Oxidative Cyclizations of {o-(Alkynyl)phenyl propargyl} Silyl Ether 427 Scheme 5: Synthesis of tert-butyl((1-(2-ethynylphenyl)-3-phenylprop-2-yn-1- yl)oxy)dimethylsilane (4-1a) 432Scheme 6: General procedure for the synthesis of substituted Nitrosobenzene 433 Scheme 7: Plausible Mechanism 442 List of Tables Chapter I Table 1: Cyclization’s of 1,6-enyne 1-1a with diazo ketone 1-2a under Au catalyst. 13 Table 2: Scope of gold-catalyzed reactions 18 Table 3: Screening of various catalysts for ring expansions 22 Table 4: Rh-catalyzed ring expansions 24 Chapter II Table 1: Synthesis of benzoazepin-4-ones with various catalysts 218 Table 2: Reactions with various 6-Allenyl-1-ynes 224 Chapter III Table 1: [4+1]-Annulations of Isoxazole with 1,4-diyn-3-ol 299 Table 2: Reactions on Various 1,4-diyn-3-ols 303 Table 3: Reactions on Various isoxazoles 306 Chapter IV Table 1: Cyclizations of {o-(Alkyne)phenyl propargyl} Silyl Ethers 4-1a with Nitrosobenzene 4-2a under Au catalyst. 430 Table 2: Cyclizations of various {o-(Alkyne)phenyl propargyl} Silyl Ethers 4-1a with Nitrosobenzene 4-2a under Au catalyst 431 Table 3: catalytic reactions with various o-(alkyne)phenyl propargyl ether 435Table 4: catalytic reactions with various Nitrosoarenes 437 .List of Figures Chapter I Figure 1: Classification of carbene precursors 2 4 Figure 2a: List of 1,6-enyne 14 Figure 2b: List List of diazo ketones 15 Figure 3: ORTEP diagram of compound (1-4c) 29 Chapter II Figure 1: Representative bioactive molecules 217 Figure 2a: List of 6-Allenyl-1-ynes 220 Figure 2b: List of N-Hydroxyanilines 220 Figure 3: ORTEP diagram of compound (2-3o) 227 Chapter III Figure 1a: 1,4-Diyn-3-ols Substrates 301 Figure 1b: Isoxazoles and Benzisoxazoles substrates 302 Figure 2: Structure determination by X-ray diffraction study and The ORTEP diagram 310 Chapter IV Figure 1: Stability of nitroso compounds 422 Figure 2: Different type of transformations with nitrosobenzene 423 Figure 3: Representative Natural Products 428 Figure 4a: List of o-(alkyne)phenyl propargyl ethers 432 Figure 4a: List of nitrosoaryls 433 Figure 5: Structure confirmation by X-ray diffraction study 443

    1.8. References:
    [1] (a) Hashmi, A. S. K.; Rudolph, M.; Chem. Soc. Rev. 2008, 37, 1766. (b) Volz, F.; Krause, N.; Org. Biomol. Chem. 2007, 5, 1519. (c) Sawama, Y.; Krause, N.; Org. Biomol. Chem. 2008, 6, 3573. (d) Krause, N.; Belting, V.; Deutsh, C.; Erdsack, J.; Fan, H.-T.; Gockel, B.; Hoffmann-roder, A.; Morita, N.; Volz, F. Pure Appl. Chem. 2008, 80, 1063. (e) Molawi, K.; Delpont, N.; Echavarren, A. M. Angew. Chem. Int. Ed. 2010, 49, 3517 (f) Fang, C.; Pang, Y.; Forsyth, C. J. Org. Lett. 2010, 12, 4528.
    [2] (a) Nunez, J. E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. (b) Hashmi, A. S. K.; Rudolph, M.; Chem. Soc. Rev. 2008, 37, 1766. (c) Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271. (d) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. (e) Furstner, A.; Davies, P. W. Angew. Chem. Int. Ed. 2007, 46, 3410.
    [3] For Au- and Pt-catalyzed cycloisomerizations of 1,n-enynes (n = 5-7), see selected examples: (a) Nunez, J. E.; Molawi, K.; Echavarren, A. M. Chem. Commun. 2009, 7327. (b) Furstner, A.; Hannen, P. Chem. Eur. J. 2006, 12, 3006. (c) Linghu, X.; Kennedy-Smith, J. J.; Toste, F. D. Angew. Chem. Int. Ed. 2007, 46, 7671. (d) Hashmi, A. S. K.; Ding, L.; Bats, J. W.; Fischer, P.; Frey, W. Chem. Eur. J. 2003, 9, 4339. (e) Zhang, L.; Kozmin, S. A.; J. Am. Chem. Soc. 2005, 127, 6962. (f) Tang, J. M.; Bhunia, S.; Sohel, S. M. A.; Lin, M. Y.; Liao, H. Y.; Datta, S.; Das, A.; Liu, R.-S. J. Am. Chem. Soc. 2007, 129, 15677. (g) Gagosz, F. Org. Lett. 2005, 7, 4129. (h) Nieto-Oberhuber, C.; Munoz, M. P.; Bunuel, E.; Nevado, C.; Cardenas, J.; Echavarren, A. M. Angew. Chem. Int. Ed. 2004, 43, 2402.
    [4] For reviews for gold and platinum catalyzed enyne cycloisomerization, see: (a) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (b) Bruneau, C. Angew. Chem. Int. Ed. 2005, 44, 2328. (c) Ma, S.; Yu, S.; Gu, Z. Angew. Chem. Int. Ed. 2006, 45, 200. (d) Michelet, V.; Toullec, P. Y.; Genet, J.-P. Angew. Chem.. Int. Ed. 2008, 47, 4268. (e) Lee, S. I.; Chatani, N. C. Chem. Commum. 2009, 371. (f) Schelwies, M.; Dempwolff, A. L.; Rominger, F.; Helmchen, G. Angew. Chem. Int. Ed. 2007, 46, 5598.
    [5] (a) Witham, C. A.; Mauleon, P.; Shapiro, N. D.; Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 5838. (b) Taduri, B. P.; Abu Sohel, S. M.; Cheng, H.-M.; Lin, G.-Y.; Liu, R.-S. Chem. Commun. 2007, 2530.
    [6] (a) Smidt, J.; Hafner, W.; Jira, R.; Sieber, R.; sedlmeier, J.; Sabel, J. Angew. Chem. Int. Ed. 1962, 74, 93; Angew. Chem. Int. Ed. 1962, 1, 80. (b) Fukuda, Y.; Utimoto, K. Bull. Chem. Soc. Jpn. 1991, 64, 2013. (c) Hashmi, A. S. K.; Schward, L.; Choi, J.-H.; Frost, T. M. Angew. Chem. Int. Ed. 2000, 39, 2285.
    [7] (a) Fukuda, Y.; Utimoto, K.; Nozaki, H. Heterocycles, 1987, 25, 297. (b) Fukuda, Y.; Utimoto, K. Synthesis, 1991, 975. (c) Lok, R.; Leone, R. E.; Williams, A. J. J. Org. Chem. 1996, 61, 3289. (d) Arcadi, A.; Giuseppe, S. D.; Marinelli, F.; Rossi, E. Adv. Synth. Catal. 2001, 343, 443.
    [8] (a) Miki, K.; Ohe, K.; Uemura, S. J. Org. Chem. 2003, 68, 8505. (b) Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002. (c) Gorin, D.J.; Dube, P.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 14480. (d) Lopez, S.; Herrero-Gomez, E.; Perez- Galan, P.; Nieto-Oberhuber, C.; Echavarren, A.M. Angew. Chem. Int. Ed. 2006, 45, 6029. (e) Hashmi, A. S. K. Angew. Chem. Int. Ed. 2005, 44, 6990. (f) For cyclization of allenynes with nucleophiles, see: Lemie`re, G.; gandon, V.; Agenet, N.; Goddard, J.; de.Kozak, A.; Aubert, C.; Fensterbank, L.; Malacria, M. Angew. Chem. Int. Ed. 2006, 45, 7596.
    [9] (a) Hutchings, G. J. Gold Bull. 1996, 29, 123. (b) Hutchings, G. J. Catal. Today, 2002, 72,11.
    [10] For a book on carbene chemistry: R. A. Moss and M. P. Doyle, Contemporary Carbene Chemistry, John Wiley & Sons, 2013.
    [11] For selected reviews on C–H bond insertion by metal carbenoids: (a) Doyle M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911. (b) Davies H. M. L.; Antoulinakis, E. G. J. Organomet. Chem. 2001, 47, 617. (c) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. (d) Davies, H. M. L; Manning, J. R. Nature 2008, 451, 417. (e) Doyle, M. P.; Duffy, R.; Ratnikov M.; Zhou, L. Chem. Rev. 2010, 110, 704. (f) Slattery, C. N.; Ford A.; Maguire, A. R. Tetrahedron 2010, 66, 6681. (g) Doyle, M. P.; Ratnikov M.; Liu, Y. Org. Biomol. Chem. 2011, 9, 4007. (h) Davies, H. M. L.; Morton, D. Chem. Soc. Rev. 2011, 40, 1857. (i) Gillingham, D.; Fei, N. Chem. Soc. Rev. 2013, 42, 4918.
    [12] Rudolph, M..; Hashmi, A. S. K. Chem. Soc. Rev. 2012, 41, 2448.
    [13] Modern Gold Catalyzed Synthesis, ed Hashmi, . A. S. K.; Toste, F. D. Wiley-VCH, Weinheim, 2012.
    [14] (a) Qian, D.; Zhang, J. Chem. Soc. Rev. 2015, 44, 677. (b) Wang, Y.; Muratore, M. E.; Echavarren, A. M. Chem. Eur. J. 2015, 21, 7332.
    [15] Lopez, s.; Gomez, E. H.; Galan, P. P.; Oberhuber, C. N.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45, 6029.
    [16] Leseure, L.; Toullec, P. Y.; Jenet, J. P.; Michelet, V. Org. Lett. 2007, 9, 4049.
    [17] Nieto-Oberhuber, C.; Lopez, S.; Paz Munoz, M.; Jimenez-Nunez, E.; Bunuel, E.; Cardenas, D. J.; Echavarren, A. M. Chem.-Eur. J. 2006, 12, 1694.
    [18] Schelwies, M.; Dempwolff, A. L.; Rominger, F.; Helmchen, G. Angew. Chem. Int. Ed. 2007, 46, 5598.
    [19] (a) Amijs, C. H. M.; Ferrer, C.; Echavarren, A. M. Chem. Commun. 2007, 698. (b) Witham, C. A.; MauleOn, P.; Shapiro, N. D.; Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 5838. (c) Padwa, A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223. (d) Padwa, A. Fryxell, G. E.; Zhi, L. J. Am. Chem. Soc. 1990, 112, 3100.
    [20] (a) Hashmi, A. S. K.; Rudolph, M.; Weyrauch, J. P.; Wolfle, M.; Frey, W.; Bats, J. W. Angew. Chem. Int. Ed. 2005, 44, 2798. (b) Hashmi, A. S. K.; Blanco, M. C.; Kurpejovic, E.; Frey, W.; Bats, J. W. Adv. Synth. Catal. 2006, 348, 709.
    [21] Gawade, S. A.; Bhunia, S.; Liu, R.-S. Angew. Chem. Int. Ed. 2012, 51, 7835.
    [22] Huple, D. B.; Mokar, B. D.; Liu, R.-S. Angew. Chem. Int. Ed. 2015, 54, 14924.
    [23] Wang, Y.; Ye, L.; Zhang, L. Chem. Commun. 2011, 47, 7815.
    [24] Monnier, F.; Bray, C. V-L.; Castillo, D.; Aubert, V.; Toupet, L.; Mealli, C.; Derien, S.; Dixneuf, P. H. J. Am. Chem. Soc. 2007, 129, 6037.
    [25] (a) Kinoshita, A.; Mori, M. Synlett 1994, 1020. (b) Mori, M.; Saito, N.; Tanaka, D.; Takimoto, M.; Sato, Y. J. Am. Chem. Soc. 2003, 125, 5606.
    [26] Reviews for catalytic cycloadditions of enynes; see (a) Wender, P. A.; Verma, V. A.; Paxton, T. H. Acc. Chem. Res. 2008, 41, 40-49; (b) Lautens, M.; Klute, W.; Tam, W.; Chem. Rev. 1996, 96, 49-92; (c) Inglesby, P. A.; Evans, P. A. Chem. Soc. Rev. 2010, 39, 2791-2805; (d) Garayalde, D.; Nevado, C. ACS. Catal. 2, 1462-1479; (e) Abu Sohel, S. M.; Liu, R.-S. Chem. Soc. Rev. 2009, 38, 2269-2281.
    [27] Reviews for [2+2+2]-cycloadditions: (a) Varela, J. A.; Saa, C. Chem. Rev. 2003, 103, 3787-3801; (b) Chopade, P. R.; Louie, J. Adv. Synth.Catal. 2006, 348, 2307-2327; (c) Heller, B.; Hapke, M. Chem. Soc. Rev. 2007, 36, 1085-1094; (d) Shaaban, M. R.; El-Sayed, R.; Elwahy, A. H. M. Tetrahedron 2011, 67, 6095-6130; (e) Dominguez, G.; -Castells, P. J. Chem. Soc. Rev. 2011, 40, 3430-3444; (f) Tanaka, K. Heterocycles 2012, 85, 1017-1043.
    [28] (a) Chung, Y. K. Coordination Chemistry Reviews. 1999, 188, 297-341; (b) Brummond, K. M.; Kent, K. L. Tetrahedron 2000, 56, 3263-3283; (c) Urgoiti, J. B.; Añorbe, L.; Serrano, L.; Domínguez, P. G.; Castells, J. P. Chem. Soc. Rev. 2004, 33, 32-42; (d) Shibata T. Adv. Synth. Catal. 2006, 348, 2328-2336; (e) Park, J. H.; Chang, K. M.; Chung, Y. K. Coordination Chemistry Reviews 2009, 253, 2461-2480; (f) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Chem. Rev. 1996, 96, 635-662; (g) Fruhauf, H. W. Chem. Rev. 1997, 97, 523-596; (h) Gibson, S.; Stevenazzi, E. Angew. Chem. 2003, 115, 1844-1854; Angew. Chem. Int. Ed. 2003, 42, 1800-1810.
    [29] (a) Berk, S. C.; Grossman, R. B.; Buchwald, S. J. Am. Chem. Soc. 1994, 116, 8593-8601; (b) Grossman, R. B.; Buchwald, S. L. J. Org. Chem. 1992, 57, 5803-5805; (c) Zhang, M.; Buchwald, S. L. J. Org. Chem. 1996, 61, 4498-4499; (d) Tamao, K.; Kobayashi, K.;. Ito, Y Synlett 1992, 539-546; (e) Tamao, K.; Kobayashi, K.; Ito, Y. J. Am. Chem. Soc. 1988, 110, 1286-1288.
    [30] (a) Pawar, S. K.; Wang, C. D.; Bhunia, S.; Jadhav, A. M.; Liu, R.-S. Angew. Chem. 2013, 125, 7707-7711; Angew. Chem. Int. Ed. 2013, 52, 7559-7563; (b) DeAngelis, A.; Taylor, M. T.; Fox, J. M. J. Am. Chem. Soc. 2009, 131, 1101-1105; (c) Xu, Z. J.; Zhu, D.; Zeng, X.; Wang, F.; Tan, B.; Hou, Y. Chem. Commun. 2010, 46, 2504-2506; (d) Qi, X.; Xu, X.; Park, C. M. Chem. Commun. 2012, 48, 3996-3998; (e) March, P. D.; Huisgen, R. J. Am. Chem. Soc. 1982, 104, 4952-4952.
    [31] (a) Jimenez-Nunez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326-3350; (b) Obradors, C.; Echavarren, A. M. Acc. Chem. Res. 2014, 47, 902-912; (c) Trost, B. M. Acc. Chem. Res. 1990, 23, 34-42; (d) Le J.; Paith, Cuervo Rodriguez, D.; de Rien, S.; Dixneuf, P. H. Synlett. 2000, 1, 95-97; (e) Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271-2296.
    [32] (a) Leseure, L.; Toullec, P. Y.; Jenet, J. P.; Michelet, V. Org. Lett. 2007, 9, 4049-4052; (b) Buzas, A. K.; Istrate, F. M.; Gagosz, F. Angew. Chem. 2007, 119, 1159 -1162, Angew. Chem. Int. Ed. 2007, 46, 1141-1144; (c) Amijs, C. H. M.; Ferrer, C.; Echavarren, A. M. Chem. Commun. 2007, 698-700; (d) Lopez, S.; Gomez, E. H.; Galan, P. P.; Berhuber, C. N.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45, 6029-6032; (e) Schelwies, M.; Dempwolff, A. L.; Rominger, A. L, F.; Helmchen, G. Angew. Chem. 2007, 119, 5694-5697; Angew. Chem. Int. Ed. 2007, 46, 5598-5601; (f) Nevado, C.; Cardenas, D. J.; Echavarren, A. M. Chem. Eur. J. 2003, 9, 2627-2635.[33] (a) Witham, C. A.; Mauleon, P.; Shapiro, N. D.; Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 5838-5839; (b) Shi, S.; Wang, T.; Yang, W.; Rudoph, M.; Hashmi, A. S. K. Chem. Eur. J. 2013, 19, 6576-6580; (c) Hung, H.-H.; Liao, Y.-C.; Liu, R.-S. J. Org. Chem. 2013, 78, 7970-7976.
    [34] In a separate work, gold-catalyzed reactions of aryldiazo esters with 2-prop-2-enyl-1-ethynylbenzenes afforded 2-substituted 3-alkenyl-1H-indenes. This obervation indicates the influence of different 1,6-enynes on their reaction chemoselectivity. See: S. B. Wagh, Y.-C. Hsu, R.-S. Liu, ACS Catal. 2016, 6, 7160-7166.

    [35] Previously, Dixneuf reported catalytic cyclizations of 1,6-enynes 1 with unsubstituted diazo species using(C5Me5)RuCl(COD) (COD = 1,5-cyclooctadiene) to yield alkenylbicyclo[3.1.0]hexanes. However, these products arose from a carbene/alkyne metathesis to generate alkenylruthenium carbenes initially. But in our gold catalysis, if the attack of gold carbenes at alkynes could occur, the initial intermediates would be cyclopropenyl species, and then alkenylgold carbenes. This hypothetic route would produce different products. For related gold reactions, see ref [33] and references therein; for ruthenium-catalysis, see: Monnier, F.;, Bray, C. V-L; Castillo, D.; Aubert, V.; Toupet, L.; Mealli, C.; Derien, S.; Dixneuf, P. H. J. Am. Chem. Soc. 2007, 129, 6037-6049.

    [36] See selected examples: (a) Zuo, G.; Louie, J. Angew. Chem. 2004, 116, 2327-2329; Angew. Chem. Int. Ed.2004, 43, 2277- 2279; (b) Wang, S. C.; Troast, D. M.; Sheridan, M. C.; Zuo, G.; LaGarde, D.; Louie, J.; Tantillo, D. J. J. Org. Chem. 2009, 74, 7822-7833; (c) Kirmse, W.; Chem, P. V.; Henning, P. G. Tetrahedron, 1985, 41, 1441-1451; (d) McGaffin, G.; Grimm, B.; Heinecke, U.; Michaelsen, H.; Meijere, A. D.; Walsh, R. Eur. J. Org. Chem. 2001, 3559-3573. (e) Gajewski, J.J.; Olson, L. P. J. Am. Chem. Soc. 1991, 113, 7432-7433; (f) Danheiser, R. L.; Davila, C. M.; Morin, J. M. J. Org. Chem. 1980, 45, 1340-1341; (g) Baldwin, J. E.; Burrell, R. C. J. Org. Chem. 1999, 64, 3567-3571; (h) Dolbier, W. R.; Sellers, S. F. J. Org. Chem. 1982, 47, 1-4; (i) Baldwin, J. E.; Villarica, K. A. ; Freedberg, T. D.; Anet, F. A. L. J. Am. Chem. Soc. 1994, 116, 10845-10846.
    [37] For Gold-catalyzed coupling reactions of two carbene precursors; see (a) Zhang, D.; Xu, G.; Ding, D.; Zhu, C.; Li, J.; Sun, J. Angew. Chem. Int. Ed. 2014, 53, 11070-11074; (b) Zhu, C.; Xu, G.; Liu, K.; Qiu, L.; Peng, S.; Sun, J. Chem. Commun. 2015, 51, 12768-12770; (c) Zhu, C.; Qiu, L.; Xu, G.; Li, J.; Sun, J. Chem. Eur. J. 2015, 21, 12871-12875.
    [38] CCDC 1499106 (1-4c) contains the supplementary crystallograhic data for this chapter. These data can be obtained free of charge from the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data-request/cif.
    [39] For Rh(1)-enolates, see selected examples: (a) Edwards, H. J.; Hargraves, J. D.; Penrose, S. D.; Frost, C. G. Chem. Soc. Rev. 2010, 39, 2093-2105; (b) Jung, C.-K; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 17051-17056; (c) Jang, H.-Y; Huddleston, R. R.; Krische, M. J. J. Am. Chem. Soc. 2000, 124, 15156-15157; (d) Lin, L.; Yamamoto, K.; Matsunaga, S.; Kanai, M. Angew. Chem. 2012, 124, 10421-10425, Angew, Chem. Int. Ed. 2012, 51, 10275-10279.
    [40] For gold catalyzed reactions of diazo species: see reviews: (a) Liu, L.; Zhang, J. Chem. Soc. Rev. 2016, 45, 506-516; (b) Fructos, M. R. ; Diaz-Requejo, M. M.; Pѐrez, P. J. Chem. Commun. 2016, 52, 7326-7335.
    [41] (a) Fructos, M. R.; Belderrain, T. R.; de Fremont, P.; Scott, N.M.; Nolan, S. P.; Diaz-Requejo, M. M.; Perez, P. J. Angew. Chem. 2005, 117, 5418-5422; Angew. Chem. Int. Ed. 2005, 44, 5284-5288; (b) Fructos, M.R.; Belderrain, T. R.; Nicasio, M. C.; Nolan, S. P.; Kaur, H.; Dıaz-Requejo, M. M.; Perez, P. J. J. Am. Chem. Soc. 2004, 126, 10846-10847; (c) Li, Z.; Ding, X.; He, C. J. Org. Chem., 2006, 71, 5876-5880; (d) Yu, Z.; Ma, B.; Chen, M.; Wu, H.-H.; Liu, L.; Zhang, J. J. Am. Chem. Soc., 2014, 136, 6904-6907; (e) Barluenga, J.; Lonzi, G.; Tomas, M.; Lopez, L. A. Chem. Eur. J., 2013, 19, 1573-1576; (f) Zhang, D.; Xu, D, G.; Ding, D.; Zhu, C. ; Li, J.; Sun, J. Angew. Chem. 2014, 126, 11250-11254; Angew. Chem. Int. Ed., 2014, 53, 11070-11074; (g) Lonzi, G.; Lopez, L. A. Adv. Synth. Catal., 2013, 355, 1948-1954; (h) Pagar, V. V.; Jadhav, A. M.; Liu, R.-S. J. Am. Chem. Soc. 2011, 133, 20728-20731; (i) Jadhav, A. M. ; Pagar, V. V.; Liu, R.-S. Angew. Chem. 2012, 124, 11979-11983; Angew. Chem. Int. Ed. 2012, 51, 11809-11813; (j) Pagar, V. V.; Liu, R.-S. Angew. Chem. 2015, 127, 5005-5008; Angew. Chem. Int. Ed. 2015, 54, 4923-4926; (k) Xi, Y.; Su, Y.; Yu, Z.; Dong, B.; McClain, E. J.; Lan, Y.; Shi, X. Angew. Chem. 2014, 126, 4745-4749; Angew. Chem. Int. Ed., 2014, 53, 9817-9821; (l) Lopez, E.; Gonzalez, J.; Lopez, L. A. Adv. Synth. Catal. 2016, 358, 1428-1432; (m) Lopez, E.; Lonzi, G.; Gonzalez, J.; Lopez, L. A. Chem. Commun. 2016, 52, 9398-9401.
    [42] (a) Huple, D. B.; Mokar, B. D.; Liu, R.–S. Angew. Chem. Int. Ed. 2015, 54, 14924-14928; (b) Zhang, L. L.; Zhang, W. Z.; Ren, X.; Tan, X. Y.; Lu, X. B. Tetrahedron Lett. 2012, 53, 3389-3392; (c) Kim, S.; Chung, Y. K. Org. Lett. 2014, 16, 4352-4355.
    [43] (a) Danheiser, R. L.; Miller, R. F.; Brisbois, R. G.; Park, S. J. Org. Chem. 1990, 55, 1959-1964; (b) Besse, P.; Sokoltchik, T.; Veschambre, H. Tetrahedron Asymmetry 1998, 9, 4441-4457; (c) Ceccherelli, P.; Curini, M.; Marcotullio, M. C.; Rosati, O. J. Org. Chem. 1990, 55, 311–315; (d) Erickson, J. L. E.; Dechary, J. M.; Kesling, M. R. J. Am. Chem. Soc. 1951, 73, 5301-5302; (e) Fieser, L. F.; Kilmer, G. W. J. Am. Chem. Soc., 1940, 62, 1354–1360; (f) Dalton, A. M.; Zhang, Y.; Davie, C. P.; Danheiser, R. L. Org. Lett. 2002, 4, 2465-2468; (g) Smith, H. E.; Eastman, R. H. J. Am. Chem. Soc. 1957, 79, 5500–5505; (i) Bo, C. Z.; Deng, H.; Guang, W. Y. J. Org. Chem. 2009, 74, 903-905.
    [1] (a) Nunez, J. E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. (b) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. (c) Hashmi, A. S. K.; Rudolph, M.; Chem. Soc. Rev. 2008, 37, 1766. (d) Furstner, A.; Davies, P. W. Angew. Chem. Int. Ed. 2007, 46, 3410. (e) Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271.
    [2] For Au- and Pt-catalyzed cycloisomerizations of 1,n-enynes (n = 5-7), see selected examples: (a) Nunez, J. E.; Molawi, K.; Echavarren, A. M. Chem. Commun. 2009, 7327. (b) Furstner, A.; Hannen, P. Chem. Eur. J. 2006, 12, 3006. (c) Linghu, X.; Kennedy-Smith, J. J.; Toste, F. D. Angew. Chem. Int. Ed. 2007, 46, 7671. (d) Hashmi, A. S. K.; Ding, L.; Bats, J. W.; Fischer, P.; Frey, W. Chem. Eur. J. 2003, 9, 4339. (e) Zhang, L.; Kozmin, S. A.; J. Am. Chem. Soc. 2005, 127, 6962. (f) Tang, J. M.; Bhunia, S.; Sohel, S. M. A.; Lin, M. Y.; Liao, H. Y.; Datta, S.; Das, A.; Liu, R.-S. J. Am. Chem. Soc. 2007, 129, 15677. (g) Gagosz, F. Org. Lett. 2005, 7, 4129. (h) Nieto-Oberhuber, C.; Munoz, M. P.; Bunuel, E.; Nevado, C.; Cardenas, J.; Echavarren, A. M. Angew. Chem. Int. Ed. 2004, 43, 2402.
    [3] For reviews for gold and platinum catalyzed enyne cycloisomerization, see: (a) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (b) Bruneau, C. Angew. Chem. Int. Ed. Engl. 2005, 44, 2328. (c) Ma, S.; Yu, S.; Gu, Z. Angew. Chem. Int. Ed. Engl. 2006, 45, 200. (d) Michelet, V.; Toullec, P. Y.; Genet, J.-P. Angew. Chem. Int. Rd. Engl. 2008, 47, 4268. (e) Lee, S. I.; Chatani, N. C. Chem. Commum. 2009, 371.
    [4] (a) Nunez, E. J.; Claverie, C. K.; Oberhuber, C. N.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45, 5452. (b) Overman, L. E.; Pennington, L. D. J. Org.Chem. 2003, 68, 7143. (c) Jasti, R.; Anderson, C. D.; Rychnovsky, S. D. J. Am. Chem. Soc. 2005, 127, 9939. (d) Alder, R. W.; Harvey, J. N.; Oakley, M. T. J. Am. Chem. Soc. 2002, 124, 4960. (e) Rychnovsky, S. D.; Marumoto, S.; Jaber, J. J. Org. Lett. 2001, 3, 3815.
    [5] Schelwies, M.; Dempwolff, A. L.; Rominger, F.; Helmchen, G. Angew. Chem. Int. Ed. 2007,46, 5598.
    [6] Aschwanden, P.; Frantz, D. E.; Carreira, E. M. Org. Lett. 2000, 2, 2331.
    [7] Yeom, H. S.; So, E.; Shin, S. Chem. Eur. J. 2011, 17, 1764.
    [8] Zeng, Q.; Zhang, L.; Yang, J.; Xu, B.; Xiao, Y.; Zhang, J. Chem. Commun. 2014, 50, 4203.
    [9] (a) Bongers, N.; Krause, N. Angew. Chem. Int. Ed. 2008, 47, 2178. (b) Krause, N.; Belting, V.; Deutsch, C.; Erdsack, J.; Fan, H. T.; Gockel, B.; Hoffmann, A. R.; Morita, N.; Volz, F. Pure Appl. Chem. 2008, 80, 1063. (c) Widenhoefer, R. A. Chem. Eur. J. 2008, 14, 5382. (d) Gandon, V.; Lemiere, G.; Hours, A.; Fensterbank, L.; Malacria, M. Angew. Chem. Int. Ed. 2008, 47, 7534.
    [10] Winter, C.; Krause, N. Angew. Chem. Int. Ed. 2009, 48, 6339.
    [11] Wang, Y.; Ye, L.; Zhang, L. Chem. Commun. 2011, 47, 7815.
    [12] Wang, Y.; Liu, L.; Zhang, L. Chem. Sci. 2013, 4, 739.
    [13] Huple, D. B.; Mokar, B. D.; Liu, R.-S. Angew. Chem. Int. Ed. 2015, 54, 14924.
    [14] Wang, Y.; Ye, L.; Zhang, L. Chem. Commun. 2011, 47, 7815.
    [15] Selected reviews: (a) Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocyclic and Natural Products (Eds.: Padwa, A.; Pearson, W. H.), Wiley: New York, 2002. (b) Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108, 2887−2092. (c) Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863−910. (d) Cardona, F.; Goti, A. Angew. Chem., Int. Ed. 2005, 44, 7832−7835.
    [16] (a) Hames, J.; Macaluso, A. Chem. Rev. 1964, 64, 473−495. (b) Snider, B. B.; Lin, H.; Foxman, B. M. J. Org. Chem. 1998, 63, 6442−6443. (c) Torrente, S.; Noya, B.; Branchadell, V.; Alonso, R. J. Org. Chem. 2003, 68, 4772−4783. (d) Grigorev, I. A. Oxides, Nitrones and Nitronates in Organic Synthesis, H. Feuer, Ed. Wiley: Hoboken, 2008, 129−434.
    [17] (a) Pfeiffer, J. Y.; Beauchemin, A. M. J. Org. Chem. 2009, 74, 8381−8383. (b) Nguyen, T. B.; Martel, A.; Dhai, R.; Dujardin, G. Org. Lett. 2008, 10, 4493−4496. (c) Winterfeldt, E.; Krohn, W.; Stracke, H. Chem. Ber. 1969, 102, 2346−2361. (d) Pernet-Poil-Chevrier, A.; Cantagrel, F.; Le Jeune K.; Philouze C.; Chavant P. Y. Tetrahedron Asymmetry, 2006, 17, 1969−1974. (e) Cantagrel, F.; Pinet, S.; Gimbert, Y.; Chavant, P. Y. Eur. J. Org. Chem. 2005, 2694−2701.
    [18] (a) Padwa, A.; Kline, D. N.; Norman, B. H. J. Org. Chem. 1989,
    54, 810−817. (b) Tufarriello, J. J.; Asrof Ali Sk.; Klingele, H. O. J. Org. Chem. 1979, 44, 4213−4215.
    [19] (a) Anderson, L. L.; Kroc M. A.; Reidl, T. W.; Son, J. J. Org. Chem. 2016, 81, 9521−9529 (review). (b) Blechert, S. Liebigs Ann. Chem. 1985, 673−682. (c) Mo, D.-L.; Wink, D. J.; Anderson, L. L. Chem. Eur. J. 2014, 20, 13217−13225. (d) Wilkens, J.; Kuhling, A.; Blechert, S. Tetrahedron 1987, 43, 3237−3246. (e) Singh, R. R.; Liu, R.-S. Chem. Commun. 2014, 50, 15864−15866.
    [20] Cycloadditions of electron-deficient allenes with trisubstituted nitrones bearing two electron-withdrawing groups were recently reported, see: Garcia-Castro M.; Kremer, L.; Reinkemeier, C. D.; Unkelbach, C.; Strohmann, C.; Ziegler, S.; Ostermann, C.; Kumar, K. Nat. Commun. 2015, 6, 6516−6528.
    [21] (a) Huple, D. B.; Mokar, B. D.; Liu, R.-S. Angew. Chem., Int. Ed. 2015, 54, 14924−14928. (b) Mokar, B. D.; Huple, D. B.; Liu, R.-S. Angew. Chem., Int. Ed. 2016, 55, 11892−11896.
    [22] (a) Sharaf, M. H. M.; Schiff, P. L., Jr.; Tackie, A. N.; Phoebe, C. H., Jr.; Davis, A. O.; Andrews, C. W.; Crouch, R. C.; Martin, G. E. J. Hetereocycl. Chem. 1995, 32, 1631–1636. (b) Waetjen, F.; Dahl, B. H.; Drejer, J.; Jensen, L. H.; (NeuroSearch A/S, Den). Application: US, 1995, 8 pp Cont-in-part of US 5,242,918. (c) Carril, M.; SanMartin, R.; Dominguez, E.; Tellitu, I. Tetrahedron 2007, 63, 690–702. (d) Ogawa, H.; Kondo, K.; Yamashita, H.; Kan, K.; Tominaga, M.; Yabuuchi, Y. (Otsuka Pharmaceutical Co., Ltd., Japan). Application: WO, 1994, 159 pp. (e) Gómez-Ayala, S.; Castrillón, J. A.; Palma, A.;Leal, S. M.; Escobar P.; Bahsas, A. Bioorganic & Medicinal Chemistry 2010, 18, 4721–4739. (f) Seko, T.; Katsumata, S.; Kato, M.; Manako, J.-i.; Ohmoto, K. (Ono Pharmaceutical Co., Ltd., Japan). Application: WO, 2003, 222 pp.
    [23] Crystallographic data of compounds 3i, 3s and 3t’ were deposited at Cambridge Crystallographic Data Center: 3i (CCDC 1567416), 3s (CCDC 1567417) and 3t’ (CCDC 1568212).
    [24] (a) Beesley, R. M.; Ingold, C. K.; Thorpe, J. F. J. Chem. Soc. Trans. 1915, 107, 1080–1106. (b) Jung, M. E.: Piizzi, G. Chem. Rev. 2005, 105, 1735–1766. (c) Kaneti, J.; Kirby, A. J.; Koedjikov, A. H.; Pojarlieff, I. G. Org. Biomol. Chem. 2004, 2, 1098–1103. (d) Bachrach, S. M. J. Org. Chem. 2008, 73, 2466–2468.
    [25] Recent review for gold-catalyzed N,O-functionalizations of alkynes, see: Huple, D. B.; Ghorpade S.; Liu, R.-S. Adv. Synth. Catal. 2016, 358, 1348–1367.
    [26] For gold-catalyzed intermolecular reactions of N-hydroxyamines with alkynes or allenes, see: (a) Wang, Y.; Ye, L.; Zhang, L. Chem. Commun. 2011, 47, 7815–7817. (b) Wang, Y.; Liu, L.; Zhang, L. Chem. Sci. 2013, 4, 739–746. (c) Kawade, R. K.; Huang, P.-H.; Karad, S. N.; Liu, R.-S. Org. Biomol. Chem. 2014, 12, 737–740. (d) Chen, J.-M.; Chang, C.-J.; Ke, Y.-J.; Liu, R.-S. J. Org. Chem. 2014, 79, 4306–4311.
    [1] For recent reviews, see: (a) E. Jimenez-Nunez, A. M. Echavarren, Chem. Commun., 2007, 333-346; (b) A. S. K. Hashmi, G. J. Hutchings, Angew. Chem. Int. Ed. 2006, 45, 7896-7936; (c) A. Hoffmann-Roder, N. Krause, Org. Biomol. Chem. 2005, 3, 387-391.
    [2] For selected examples, see: (a) J. R. Manning, H. M. Davies, J. Am. Chem. Soc. 2008, 130, 8602-8603; (b) K. C. Coffman, T. A. Palazzo, T. P. Hartley, J. C. Fettinger, D. J. Tantillo, M. J. Kurth, Org. Lett. 2013, 15, 2062-2065; (c) A. H. Zhou, Q. He, C. Shu, Y. F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu, L.-W. Ye, Chem. Sci. 2015, 6, 1265-1271; (d) H. Kawai, K. Tachi, E. Tokunaga, M. Shiro, N. Shibata, Angew. Chem., Int. Ed. 2011, 50, 7803-7806; (e) X. L. Liu, W. Y. Han, X. M. Zhang, W. C. Yuan, Org. Lett. 2013, 15, 1246-1249; (f) H. Takikawa, A. Takada, K. Hikita, K. Suzuki, Angew. Chem. Int. Ed. 2008, 47, 7446-7449; (g) X. Lei, M. Gao, Y. Tang, Org. Lett. 2016, 18, 4990-4993; (h) E. E. Galenko, A. V. Galenko, A. F. Khlebnikov, M. S. Novikov, RSC Adv. 2015, 5, 18172-18176; (i) S. Pusch, T. Opatz, Org. Lett. 2014, 16, 5430-5433
    [3] See selected review for gold-catalyzed N-oxide reactions: (a) L. Zhang, Acc. Chem. Res. 2014, 47, 877-888; (b) H.-S. Yeom, S. Shin, Acc. Chem. Res. 2014, 47, 966-977; (c) Z. Zheng, Z. Wang, Y. Wang, L. Zhang, Chem. Soc. Rev., 2016, 45, 4448-4485; (d) R. J. Harris, R. A. Widenhoefer, Chem. Soc. Rev., 2016, 45, 4533-4551;
    [4] J. R. Manning, H. M. L. Davies, Tetrahedron, 2008, 64, 6901-6908.
    [5] X.-Y. Xiao, A.-H. Zhou, C. Shu, F. Pan, T. Li, L.-W. Ye, Chem. Asian J. 2015, 10, 1854-1858.
    [6] Sahani, R. L.; Liu, R.-S. Angew. Chem. Int. Ed. 2017, 56, 1026-1030;
    [7] For review on transition metal-catalyzed cleavage of alkynes, see: F. Chen, T. Wang, N. Jiao, Chem. Rev. 2014, 114, 8613-8661.
    [8] For gold and silver-catalyzed cleavage of alkynes, see selected examples: a) M. Gaydou, A. M. Echavarren, Angew. Chem. Int. Ed. 2013, 52, 13468-13471; b) Y. Liu, F. Song, S. Guo, J. Am. Chem. Soc. 2006, 128, 11332-11333; c) T. Shen, T. Wang, C. Qin, N. Jiao, Angew. Chem. Int. Ed. 2013, 52, 6677-6680; d) A. Das, R. Chaudhuri, R.-S. Liu, Chem. Commun. 2009, 4046-4048; e) D. V. Patil, H.-S. Park, J. Koo, J. W. Han, S. Shin, Chem. Commun. 2014, 50, 12722-12725.
    [9] For gold-catalyzed N-O functioanlizations of alkynes, see selected review: (a) Huple, D. B.; Ghorpade, S.; Liu, R.-S. Adv. Synth. Catal. 2016, 358, 1348. (b) Li, L.; Tan, T.-D.; Zhang, Y.-Q.; Liu, X.; Ye, L.-W. Org. Biomol. Chem. 2017, 15, 8483.
    [10] For [3+2] nitrones/alkenes, see selected reviews: (a) Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocyclic and Natural Products, (Eds.: Padwa, A.; Pearson, W. H.), Wiley, New York, 2002. (b) Hashimoto, T.; Maruoka, K. Chem. Rev. 2015, 115, 5366. (c) Stanley, L. M.; Sibi, M. P.; Chem. Rev. 2008, 108, 2887. (d) Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863. (e) Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106, 4484. (f) Confalone, P. N.; Huie, E. M. Org. React. 1988, 36, 1.
    [11] For [4+2]-cycloadditions of nitroso/dienes, see selected reviews: (a) Bodnar, B. S.; Miller, M. J. Angew. Chem. Int. Ed. 2011, 50, 5630. (b) Yamamoto, Y.; Yamamoto, H. Eur. J. Org. Chem. 2006, 2031. (c) Vogut, P. F.; Miller, M. J. Tetrahedron. 1998, 54, 1317. (d) Denmark, S.E.; Thorarensen, A. Chem. Rev. 1996, 96, 137.
    [12] (a) Zhou, A.-H.; He, Q.; Shu, C.; Yu, Y.-F.; Liu, S.; Zhao, T.; Zhang, W.; Lu, X.; Ye, L.-W. Chem. Sci. 2015, 6, 1265. (b) Xiao, X.-Y.; Zhou, A.-H.; Shu, C.; Pan, F.; Li, T.; Ye, L.-W. Chem. Asian J. 2015, 10, 1854. (c) Shen, W.-B.; Xiao, X.-Y.; Sun, Q.; Zhou, B.; Zhu, X.-Q.; Yan, J.-Z.; Lu, X.; Ye, L.-W. Angew. Chem. Int. Ed. 2017, 56, 605.
    [13] (a) Jin, H.; Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2016, 55, 794. (b) Jin, H.; Tian, B.; Song, X.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2016, 55, 12688.
    [14] (a) Zeng, Z.; Jin, H.; Xie, J.; Tian, B.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Org. Lett. 2017, 19, 1020. (b) Chen, M.; Sun, N.; Chen, H.; Liu, Y. Chem. commun. 2016, 52, 6324. (c) Xu, W.; Wang, G.; Sun, N.; Liu, Y. Org. Lett. 2017, 19, 3307.
    [15] (a) Sahani, R. L.; Liu, R.-S. Angew. Chem. Int. Ed. 2017, 56, 1026. (b) Sahani, R. L.; Liu, R.-S. Angew. Chem. Int. Ed. 2017, 56, 12736.
    [16] (a) Wang, T.; Shi, S.; Hansmann, M. M.; Rettenmeier, E.; Rudolph, M.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2014, 53, 3715. (b) Hsu, Y.-C.; Hsieh, S.-A.; Li, P.-H.; Liu, R.-S. Chem. Commun. 2018, 54, 2114.
    [17] Crystallographic data of compounds 3h, and 6a were deposited at Cambridge Crystallographic Data Center: 3h (CCDC 1833352), and 6a (CCDC 1833496).
    [18] For the chemical cleavage of N-enonyl pyrroles, see selected examples: (a) Glvens, R. S.; Choo, D. J.;. Merchant, S. N.; Stitt, R. P.; Matuszewski, B. Tetrahedron Lett. 1982, 23, 1327. (b) Schmidt, E. Y.; Vasil'tsov, A. M.; Zorina, N. V.; Ivanov, A. V.; Mikhaleva, A. I.; Trofimov, B. A. Chem. Heterocycl. Compd. 2012, 47, 1300. (c) Trofimov, B. A.; Shmidt, E. Y.; Mikhaleva, A. I.; Zorina, N. V.; Senotrusova E. Y. Russ. J. Org. Chem. 2008, 44, 1247.
    [19] (a) Olah, G. A.: Reddy, V. P.; Prakash G. K. S. Chem. Rev. 1992, 92, 99. (b) Olah, G. A.,: Reddy, V.; Prakash G. K. S. Chemistry of the cyclopropyl group, part 2, Z. Rappoport, ed., John wiley and Sons, Chichester, UK., 1995, 813.
    [20] For gold-catalyzed [4+1]-annulations, see selected examples: (a) Wang, J.; Yao, X.; Wang, T.; Han, Zhang, J.; Zhang, X.; Wang, P.; Zhang, Z. Org. Lett. 2015, 17, 5124. (b) Zhu, C.; Xu, G.; Sun, J. Angew. Chem. Int. Ed. 2016, 55, 11867. (c) Wang, Y.-H.; Muratore, M. E.; Rong, Z.-T.; Echavarren, A. M. Angew. Chem., Int. Ed. 2014, 53, 14022. (d) Yu, Z.; Qiu, H.; Liu, L.; Zhang, J. Chem. Commun. 2016, 52, 2257. (e) Shu, C.; Wang, Y.-H.; Shen, C.-H.; Ruan, P.-P.; Lu, X.; Ye, L.-W. Org. Lett. 2016, 18, 3254. (f) Dateer, R. B.; Pati, K.; Liu, R.-S. Chem. Commun. 2012, 48, 7200.
    [21] For gold-catalyzed synthesis of pyrrole derivatives from alkynes,1,4-5,8,11e see additional examples: (a) Gorin, D. J.; Davies, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260. (b) Davies, P. W.; Martin, N. Org. Lett. 2009, 11, 2293. (c) Binder, J. T.; Kirsch, S. F. Org. Lett. 2006, 8, 2151. (d) Saito, A.; Konishi, T.; Hanzawa, Y. Org. Lett. 2010, 12, 372. (e) Wu, Y.; Zhu, L.; Yu, Y.; Luo, X.; Huang, X. J. Org. Chem. 2015, 80, 11407. (f) Zhu, L.; Yu, Y.; Mao, Z.; Huang, X. Org. Lett. 2015, 17, 30. (g) Pawar, S. K.; Sahani, R. L.; Liu, R.-S. Chem. Eur. J. 2015, 21, 10843. (h) Davies, P. W.; Martin, N. J. Organomet. Chem. 2011, 696, 159.
    [1] (a) Boyer, J. H.; In The Chemistry of the Nitro and Nitroso Groups, Part 1; Patai, S.; Ed.; Interscience Publishers: New York, 1969; Chapter 5; (b) Zuman, B. P.; Shah, Chem. Rev. 1994, 94, 1621.
    [2] Leach, A. G.; Houk, K. N.; J. Chem. Soc., Chem. Commun., 2002, 1243.
    [3] Baeyer, A.; Ber., 1874, 7, 1638.
    [4] (a) Vogt, P. F.; Miller, M. J.; Tetrahedron 1998, 54, 1317-1348; (b) Quadrelli, P.; Invernizzi, A. G.; Caramella, P.; Tetrahedron Lett. 1996, 37, 1909; (c) Quek, S. K.; Lyapkalo, I. M.; Huynh, H. V.; Synthesis, 2006, 9, 1423; (d) Banks, R. E.; Barlow, M. G.; Haszeldine, R. N.; J. Chem. Soc., 1965, 4714.
    [5] (a) Oppolzer, W.; Tamura, O.; Tetrahedron Lett. 1990, 31, 991; (b) Oppolzer, W.; Tamura, O.; Sundarababu, G.; Signer, M.; J. Am.Chem. Soc. 1992, 114, 5900; (c) Momiyama, N.; Yamamoto, H.; Org. Lett. 2002, 4, 3579.
    [6] Goelitz, P.; Meijere, A.; Angew. Chem. 1977, 89, 892.
    [7] (a) Aston, A.; Menard, M.; J. Am. Chem. Soc. 1935, 57, 1922; (b) Forrester, A. R.; Hepburn, S. P.; J. Chem. Soc. 1971, 3322; (c) Goldman, J.; Tetrahedron 1973, 29, 3833.
    [8] Druellinger, M. L.; J. Heterocycl. Chem. 1976, 13, 1001.
    [9](a) Adam, W.; Bottle, S. E.; Peters, K.; Tetrahedron Lett. 1991, 32, 4283; (b) Torssell, K.; Tetrahedron 1970, 26, 2759; (c) Forrester, A. R.; Henderson, J. K.; Reid, Tetrahedron Lett. 1983, 24, 5547.
    [10] (a) Ginsburg, V. A.; J. Org. Chem. USSR (Engl. Trans.) 1974, 10, 1427; (b) Barr, V. A.; Hazeldine, R. N.; J .Chem. Soc. 1955, 1881; (c) Lin, C.-T.; Hsu, W.-J.; Can. J. Chem. 1989, 67, 2153;(d) Viehe, H. G.; Merenyi, R.; Francotte, E.; Van Meerssche, M.; Germain, G.; Declercq, J. P.; Bodart-Gilmont, J. J. Am. Chem.Soc. 1977, 99, 2340; (e) Gouverneur, V.; Dive, G.; Ghosez, L.; Tetrahedron Asymmetry 1991, 12, 1173; (f) Christie, C. C.; Kirby, G. W.; McGuian, H.; Mackinnon, J. W. M.; J. Chem. Soc., Perkin. Trans. 1 1985, 11, 1972. (g) Adam, W.; Krebs, O.; Chem. Rev. 2003, 103, 4131.
    [11] Singh, R. R.; Liu, R.-S. Chem. Commun. 2014, 50, 15864–15866.
    [12] Mukherjee, A.; Dateer, R. B.; Chaudhari, R.; Bhunia, S.; Karad, S. N.; Liu, R.-S.; J. Am. Chem. Soc. 2011, 133, 15372–15375
    [13] Chen, C.-H.; Tsai, Y.-C.; Liu, R.-S.; Angew. Chem. Int. Ed. 2013, 52, 4599–4603.
    [14] Zhao, J.; Xu, W.; Xie, X.; Sun, N.; Li, X.; Liu, Y.’ Org. Lett. 2018, 20, 5461−5465
    [15] For reviews, see: (a) Teponno, R. B.; Kusari, S.; Spiteller, M.; Nat. Prod. Rep. 2016, 33, 1044–1092; (b) Hemmati, S.; Seradj, H.; Molecules 2016, 21, 820– 839; (c) Jullian-Pawlicki, N.; Lequart-Pillon, M.; Huynh-Cong, L.; Lesur, D.; Cailleu, D.; Mesnard, F.; Laberche, J. C.; Gontier, E.; Boitel-Conti, M.; Phytochem. Anal. 2015, 26, 310–319; (d) Schmidt, T. J.; Klaes, M.; Sendker, J.; Phytochemistry 2012, 82, 89–99; (e) Man, S.; Gao, W.; Wei, C.; Liu, C.; Phytother. Res. 2012, 26, 1449–1465; (f) Tadross, P. M.; Stoltz, B. M.; Chem. Rev. 2012, 112, 3550–3577; (g) Ward, R. S.; Nat. Prod. Rep. 1995, 12, 183–205, and references cited therein.
    [16] (a) Yu, Z.; Dan, W.; Jie, H.; Li, Z.; Med. Chem. Res. 2010, 19, 71–76; (b) Gui, M.; Shi, D.-K.; Huang, M.; Zhao, Y.; Sun, Q.-M.; Zhang, J.; Chen, Q.; Feng, J.-M.; Liu, C.-H.; Li, M.; Li, Y.-X.; Geng, M. Y.; Ding, J.; Invest. New Drugs 2011, 29, 800–810; (c) Shi, D. K.; Zhang, W.; Ding, N.; Li, M.; Li, Y.-X.; Eur. J. Med. Chem. 2012, 47, 424–431; (d) Inokova, I.; Mini-Rev. Med. Chem. 2010, 11, 854–856.
    [17] (a) Chen, C. C.; Hsin, W. C.; Ko, F. N.; Huang, Y. L.; Ou, J. C.; Teng, C. M.; J. Nat. Prod. 1996, 59, 1149–1150;(b) Weng, J. R.; Ko, H. H.; Yeh, T. L.; Lin, H. C.; Lin, N. C.; Arch. Pharm. 2004, 337, 207–212. [4] Janmanchi, D.; Tseng, Y. P.; Wang, K.-C.; Huang, R. L.; Lin, C. H.; Yeh, S. F.; Bioorg. Med. Chem. 2010, 18, 1213–1226.
    [18] Ukita, T.; Nakamura, Y.; Kubo, A.; Yamamoto, Y.; Takahashi, M.; Kotera, J.; Ikeo, T.; J. Med. Chem. 1999, 42, 1293–1305.
    [19] Delorme, D.; Ducharme, Y.; Brideau, C.; Chan, C.-C.; Chauret, N.; Desmarais, S.; Dube, D.; Falgueyret, J.-P.; Fortin, R.; Guay, J.; Hamel, P.; Jones, T. R.; Lepine, C.; Li, C.; McAuliffe, M.; McFarlane, C. S.; Nicoll-Griffith, D. A.; Riendeau, D.; Yergey, J. A.; Girard, Y.; J. Med. Chem. 1996, 39, 3951–3970.
    [20] (a) Chang, C.-W.; Lin, M.-T.; Lee, S.-S.; Karin, C. S.; Chen Liu, K. C. S.; Hsu, F.-L.; Lin, J.-Y.; Antiviral Res. 1995, 27, 367–374; (b) Lee, S.-S.; Liu, M.-T.; Liu, C.-L.; Lin, Y.-Y.; Chen Liu, K. C. S.; J. Nat. Prod. 1996, 59, 1061–1065.
    [21] Kawazoe, K.; Yutani, A.; Tamemoto, K.; Yuasa, S.; Shibata, H.; Higuti, T.; Takaishi, Y.; J. Nat. Prod. 2001, 64, 588–591.
    [22] For recent reviews, see: (a) Kumar, K.; Waldmann, H.; Angew. Chem. Int. Ed. 2009, 48, 3224–3242; Angew. Chem. 2009, 121, 3272; (b) Nandy, J. P.; Prakesch, M.; Khadem, S.; Reddy, T.; Sharma, U.; Arya, P.; Chem. Rev. 2009, 109, 1999–2060.
    [23] Silva, O.; Gomes, E. T.; J. Nat. Prod. 2003, 66, 447-449.
    [24] (a) Kumar, H. V.; Kumar, P.; Rangaswami, J.; Sindhu, K. U.; Naik, Eur. J. Chem. 2015, 6, 394–403. (b) Hao, L.P.; Xue, W.Z.; Han, X.F.; He, X.; Zhang, J.; Zhou, Z.M. Med. Chem. Commun. 2015, 6, 715–718. (c) Nematollahi, D.; Namdar, A.; Momeni, S. J. Electroanal. Chem. 2018, 810, 161–170. (d) Arayne, M. S.; Sultana, N.; Haroon, U.; Zuberi, M. H.; Rizvi, S. B. S. Synthesis,. Arch Pharm Res. 2010, 33, 1901-1909.
    [25] (a) Yaoa, W.; Qianb, X. J. Fluorine Chem., 2000, 106, 69-72. (b) Roy, S. K.; Tiwari, A.; Saleem, M.; Jana, C. K. Chem. Commun., 2018, 54, 14081-14084.
    [25] Bolognese, A.; Correale, G.; Manfra, M.; Lavecchia, A.;| Novellino, e.; Pepe, S. J. Med. Chem. 2006, 49, 5110-5118.
    [26] Ashley, J. N.; Hobbs, B. C.; Raistrick, H.; Biochem. J. 1937, 31, 385-397.
    [27] Stout, G.; Jensen, L. Acta Crystallogr. 1962, 15, 451-457.
    [28] Takahashi, D.; Maoka, T.; Tsushima, M.; Fujitani, K.; Kozuka, M.; Matsuno, T.; Shingu, T. Chem. Pharm. Bull. 2002, 12, 1609-1612.

    QR CODE