研究生: |
黃志仁 Huang, Chih Ren |
---|---|
論文名稱: |
穿戴式下肢輔具之研發設計及效能評估 Design of Wearable Lower Limb Exoskeleton and Its Assessment |
指導教授: |
蕭德瑛
Shaw, Dein |
口試委員: |
蕭德瑛
陳建祥 葉廷仁 陳協慶 陳嘉玲 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 124 |
中文關鍵詞: | 輔具 、表面肌電訊號 、有限元素 、機構設計 |
外文關鍵詞: | Exoskeleton, lower limb orthosis, sEMG |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣地區已經進入到老年化社會之林,隨著人口的急速老化,有關老年人預防保健、醫療照顧及安置的課題的各種研究將越來越重要。在本研究中設計一穿戴式下肢輔具,希望能輔助老人、運動傷害、小兒麻痺、等下肢不便之人們達到輔助的效果。
在本研究中將分為六大部分第一部份(第二章)探討人體步態分析,以三維實驗搭配LifeMOD模擬的方式瞭解人們爬梯的各種力學參數;第二部份(第三章)由人們步態的力學行為,以有限元素法分析輔具結構的強度及對於穿戴人體輔具結構與皮膚的剪力;第三個部份(第四章)則由第一部份結果設計出符合人體下肢路徑的撓性桿件(Spring Structure),用於輔助膝關節(Knee)力矩,再由第二部份結果應用在輔具結構材料及外型設計,最後搭配新型態的高壓二氧化碳氣體作為動力源裝置以及鋼纜驅動機制,形成整體下肢輔具系統之雛形;第四部份(第五章)以表面肌電訊號(sEMG)的MMF(Magnitude median frequency)頻率搭配修正迴歸分析方法來預測方式肱二頭肌(Biceps Brachii)肌肉在手部反覆抬舉肌肉局部疲勞忍受度的時間,此方法目是要建立分析輔具成效機制;最後部份(第六章)是以第四部份的方法分析人體下肢肌群在穿與無穿輔具的成效,另外也運用肢段(節)法(Segmental method)分析在穿與無穿輔具的膝關節力矩。
最後由各種成效分析結果顯示,本研究開發出的穿戴式下肢輔具對於輔助膝關節有良好的輔助效能,此研究希望提供未來輔具的研究及開發上一定方向及貢獻。
Taiwan has already entered the realm of aging societies; with its rapidly aging population, studies concerning preventative health care, medical care, and arrangements for the elderly have become more and more important. This study designs a wearable lower limb exoskeleton in the hopes to help less able people, for example the elderly or people who suffers sports injuries or polio.
This study is comprised of five parts. The first part (Chapter 2) referred to the gait analysis, where 3-dimensional experiments are combined with LifeMOD simulation to analyze various mechanical behaviors in people climb stairs. The second part (Chapter 3) was to analyze the structural strength of the assistive devices by the finite element method and the shear stress on the comfortable state of skin from wearing the lower limb exoskeleton. The third part (Chapter 4) concerns the design of a spring structure that conforms to the lower limb path to provide assistive knee torque to the result from Part 1. The results of Part 2 are then applied to the material of construction (lower limb exoskeleton) and the shape design. Finally, a high pressure carbon dioxide gas is used as the power source, and a cable-driven mechanism is used to complete the prototype of the entire lower limb exoskeleton system. The fourth part (Chapter 5) uses the magnitude median frequency (MMF) of the surface electromyography (sEMG) in combination with modified regression analysis to predict the local fatigue endurance time of the biceps brachii when the hands are lifted repeatedly task. The purpose of this method is to analyze the effectiveness of the exoskeleton. The last part (Chapter 6) analyzes the effect of wearing or not wearing exoskeleton on lower limb muscles, using the methods mentioned in Part 4 (Chapter 5); in addition, the segmental method is also applied to analyze knee torque with or without wearing exoskeleton.
1.Felson D. T., Lawrence R. C. and Dieppe P. A., “Osteoarthritis: new insights. Part 1: the disease and its risk factors,” Annals of Internal Medicine, vol. 133, No. 8, pp. 635-646, 2000.
2.Lawrence R. C., Helmick C. G. and Arnett F. C., “Estimates of the prevalence of arthritisand selected musculoskeletal disorders in the United States,” Arthritis and Rheumatism, Vol.41, No.5, pp. 778-799, 1998.
3.McAlindon T. and Dieppe P., “Osteoarthritis: definitions and criteria,” Annals of the Rheumatic Diseases. Vol.48, No.7, pp. 531-532, 1989.
4.Felson DT, Naimark A, Anderson J, Kazis L, Castelli W and Meenan RT., “The prevalence of knee osteoarthritis in the elderly,” Annals of the Rheumatic Diseases, Vol.30, No.8, pp. 914-918, 1987.
5.McAlindon E. T., Snow S., Cooper C. and Dieppe P. A., “Radiographic patterns of osteoarthritis of the knee joint in the community: the importance of the patellofemoral joint,” Annals of the Rheumatic Diseases, Vol.51, pp. 844-849, 1992.
6.Verzijl N., Bank R. A., TeKoppele J. M. and DeGroot J., “Ageing and osteoarthritis: a different perspective,” Current Opinion in Rheumatology, Vol.15, No.5, pp.616-622, 2003.
7.蔡秉憲,小兒麻痺患者之下肢架設計,碩士論文,清華大學動力機械工程學系,1994。
8.Rock Island Arsenal Biomechanics Symposium, Biomechanics: proceedings, 1st, Augustana College, 1967.
9.Sunghoon K., George, A. and Kazerooni H., “High-speed Communication Network for Controls with the Application on the Exoskeleton,” Proceedings of the 2004 American Control Conference, Boston, MA, June30-July2, 2004.
10.Kawamoto H. and Sankai Y., “Power Assist Method Based on Phase Sequence Driven by Interaction between Human and Robot Suit,” Proceedings of the 2004 IEEE International Workshop on Robot and Human Interactive Communication, Kurashiki. Okayama, Japan, Sep, 2004.
11.Pratt J.E., Krupp B.T., Morse C.J., and Collins S.H., “The RoboKnee: An Exoskeleton for Enhancing Strength and Endurance During Walking” Proceedings of the 2004 IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, April.
12.Abbas F. and Agrawal S. K., “On the Design of a Passive Orthosis to Gravity Balance Human Legs,” Transactions of the ASME, Journal of Mechanical Design, Vol.127, No. 4, p 802-808, 2005.
13.Sai K. B., Agrawal S. K., Abbas F., Krishnamoorthy V., Hsu W. L., Scholz J. and Katherine R., “Gravity-Balancing Leg Orthosis and Its Performance Evaluation,” IEEE Transactions on Robotics, Vol. 22, No. 6, pp. 1228-1239, 2006.
14.Peter J. G. and Malcolm H. G., “A knee and ankle flexing hybrid orthosis for paraplegic ambulation,” Medical Engineering & Physics, Vol.25, pp.539–545, 2003.
15.Yukio S., Kazuya K., Hiroshi N., Toru O. and Toshimasa H., “Development of Externally Powered Lower Limb Orthosis with Bilateral-servo Actuator,” Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, June 28 - July 1, Chicago, IL, USA, 2005.
16.Conor J. W., Ken E. and Hugh M. H., “A Quasi-Passive Leg Exoskeleton for Load-Carrying Augmentation,” International Journal of Humanoid Robotics, Vol. 4, pp.487–506, 2007.
17.Allemand Y., Stauffer Y., Clavel R. and Brodard R., “Design of a new lower extremity orthosis for overground gait training with the WalkTrainer,” IEEE International Conference on Rehabilitation Robotics (ICORR), Kyoto, Japon, 2009.
18.Information on: http://www.argomedtec.com
19.James R. G., “Gait Analysis in Cerebral Palsy,” Publication info, London, Mac Keith Press, 1991.
20.Randall & Braddom, “Physical Medicine and Rehabilitation (Ⅰ),” W.B. Saunders Company, 1996.
21.Jessica R. and James G. G., “Human walking,” Philidelphia : Lippincott Williams and Wilkins, 2006.
22.Nadeau S., McFadyen B.J. and Malouin F., “Frontal and sagittal plane analyses of the stair climbing task in healthy adults aged over 40 years: what are the challenges compared to level walking ? ,” Clinical Biomechanics, Vol. 18, pp. 950-959, 2003.
23.Information on: http://www.shadowrobot.com/
24.Sugisaka M., Watanabe T. and Haral M., “Motion control of arm using artificial muscles,” SICE-ICASE International Joint Conference, Oct. 18-21, Bexco, Busan, Korea, 2006.
25.Sawicki G.S., Gordon K.E. and Ferris D.P., “Powered Lower Limb Orthoses: Applications in Motor Adaptation and Rehabilitation,” Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, June 28 - July 1, Chicago, IL, USA, 2005.
26.Ming Z. and Roberts C., “Comparison of computational analysis with clinical measurement of stresses on below-knee residual limb in a prosthetic socket,” Medical Engineering & Physics, Vol.22, pp. 607-612, 2000.
27.Lee W.C., Zhang M., Jia X. and Cheung J. T. “Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket,” Medical Engineering & Physics, Vol. 26, pp. 655-662, 2004.
28.Joan E. S., Colin H. D. and Ernest M. B., “Interface shear stresses during arnbulation with a below-knee prosthetic limb,” Journal of Rehabilitation Research and Developmen, Vol. 29, pp. 1-8, 1992.
29.Zachariah S. G. and Sanders J. E., “Finite element estimates of interface stress in the trans-tibial prosthesis using gap elements are different from those using automated contact,” Journal of Biomechanics, Vol. 33, pp. 895-899, 2000.
30.Donahue T. L. H., Hull M. L., Rashid M. M. and Jacobs C. R., “A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact,” Journal of Biomechanical Engineering, Vol. 124, pp. 273-280, 2002.
31.高德昌,以有限元素法分析功能性動作中人工全膝關節之生物力學,碩士論文,台灣大學醫學工程研究所,2003。
32.黃建偉,全人工膝關節髕股骨關節元件不當對位之接觸特性分析,碩士論文,陽明大學醫學工程研究所,2002。
33.Nina K. V., “Measurement of human muscle fatigue,” Journal of Neuroscience Methods, Vol. 74, pp. 219–227, 1997.
34.Edwards R. H. T., “Human muscle function and fatigue. In: Human Muscle Fatigue: Physiological Mechanisms,” London: Pitman Medical, pp. 1-18, 1981.
35.Arthur J. V., James H. S. and Dorothy S. L., “Human Physiology,” 7 thed, New York : The McGraw-Hill Companies, Inc., 2002.
36.Gandevia S. C., Enoka R. M., McComas A. J., Stuart D. G. and Thomas C. K., “Neurobiology of muscle fatigue. Advances and issues,” In : Gandevia S. C., Enoka R. M., McComas A. J. ,Stuart D. G. and Thomas C. K. eds., Fatigue : neural and muscular mechanisms, Advances in experimental medecine and biology, New York, Springer.
37.Chaffin D. B., “Localized Muscle Fatigue - Definition and Measurement,” Journal of Occupational Medicine, Vol. 15, pp. 346-354, 1973.
38.Ohata K., Yasui T., Tsuboyama T. and Ichihashi N., “Effects of an ankle-foot orthosis with oil damper on muscle activity in adults after stroke,” Gait & Posture, Vol. 33, pp. 102-107, 2010.
39.孫佑榮,人工搬運作業之生物力學模擬與分析,碩士論文,朝陽科技大學工業工程與管理系,2008。
40.Kadaba M. P., Ramakrishnan H. K. and Wootten M. E., “Measurement of lower extremity kinematics during level walking. Journal of Orthopaedic Research,” Journal of Orthopaedic Research, Vol. 8, pp. 383-392, 1990.
41.Duane K., “Fundamentals of Biomechanics,” 2nd Edition, Springer, 2007.
42.Kaufman K. R. and Irby S. E., “Ambulatory KAFOs: A Biomechanical Engineering Perspective,” Journal of Prosthetics and Orthotics, Vol.18, pp.P175, 2006.
43.Zhang M., Lord M., Turner-Smith A. R., Roberts V. C., “Development of a nonlinear finite element modeling of the below-knee prosthetic socket interface,” Medical Engineering & Physics, Vol. 17, pp. 559–66, 1995.
44.Lardner T. J. and Archer R. R., “Mechanics of Solids: An Introduction,” McGraw-Hill Ltd;1994.
45.Alcoa Company, Mill products, ALLOY 7075 mechanical properties. Information on: http://www.alcoa.com/global/en/home.asp
46.黃立成,下肢輔具之撓性桿件的分析與設計,碩士論文,清華大學動力機械工程學系,2007。
47.Shaw D., Huang C. R. and Huang L. C., “Design of Non-linear Beam-type Spring for Designated Loading and Displacement for Use in Lower-limb Orthosis,” Computers, Materials & Continua, Vol.11, No.3, pp.229-242, 2009.
48.陳呈芳,熱力學概論,全華科技圖書股份有限公司,2004.
49.Gene F. F., David P. J. and Abbas E. N., “Feedback Control of Dynamic Systems,” 4th Edition, Prentice-Hall, 2002.
50.盧廷將,穿戴式下肢輔具動態控制與可攜性實現,碩士論文,清華大學動力機械工程學系,新竹,2007。
51.吳孟哲,穿戴式下肢輔具之氣壓式人工肌肉鑑別與控制,碩士論文,國立清華大學動力機械工程學系,2008。
52.Yeh T. J., Wu M. J., Lu T. J., Wu F. K., Huang C. R., “Control of McKibben pneumatic muscles for a power-assist, lower-limb orthosis,” Mechatronics, Vol.20, no.6, pp.686-697, 2010.
53.林南寰,以肌電訊號為基礎之動力輔具設計與實作,碩士論文,清華大學動力機械工程學系,2008。
54.Farina D., Gazzoni M., and Merletti R., “Assessment of low back muscle fatigue by surface EMG signal analysis: Methodological aspects,” Journal of electromyography and kinesiology, Vol. 13, pp. 319-332, 2003.
55.田國華,武術馬步參與肌群及肌肉疲勞之EMG研究,碩士論文,中國文化大學運動教練研究所,2004。
56.Tommy Öberg, “Muscle fatigue and calibration of EMG measurements,” Journal of electromyography and kinesiology, Vol. 5, No. 4, pp. 239-243, 1995.
57.Jeffrey R. C., Glenn S. K. and Jonathan H., “Introduction to Surface Electromyography,” Jones & Bartlett Publishers, 1998.
58.Clarkson H. M., “Musculoskeletal Assessment: Joint Range of Motion and Manual Muscle Strength,” 2nd Edition, Lippincott Williams & Wilkins, 1999.
59.Landau S. and Everitt B. S., “A handbook of statistical analyses using SPSS,” Chapman & Hall/CRC, Boca Raton, London, 2004.
60.Ng J. K. and Richardson C. A., “Reliability of electromyographic power spectral analysis of back muscle endurance in healthy subjects,” Archives of Physical Medicine and Rehabilitation, Vol. 77, No. 3, pp. 259-264, 1996.
61.Joseph H. and Kathleen M. K., “Biomechanical Basis of Human Movement,” 3rd Edition, Lippincott Williams & Wilkins, 2008.
62.許承志,下肢動力輔具設計與實作,碩士論文,清華大學動力機械工程學系,2010。
63.Information on: http://www.burster.com/en/home/home.html
64.勞工安全衛生研究所,人體計測資料庫,行政院勞工委員會勞工安生衛生研究所,2006。
65.Shin H. J. and Kim J. Y., “Measurement of trunk muscle fatigue during dynamic lifting and lowering as recovery time changes,” International Journal of Industrial Ergonomics, Vol. 37, pp. 545–551, 2007.
66.Komi P. V. and Tesch P., “EMG Frequency Spectrum, Muscle Structure, and Fatigue During Dynamic Contractions in Man,” European Journal of Applied Physiology and Occupational Physiology, Vol. 42, pp. 41-50, 1979.
67.Mazzà C., Benvenuti F., Bimbi C. and Stanhope S. J., “Association between subject functional status, seat height, and movement strategy in sit-to-stand performance,” Journal of the American Geriatrics Society, Vol. 52, pp. 1750- 1754, 2004.