研究生: |
張恆睿 Chang, Heng-Jui |
---|---|
論文名稱: |
利用RBS Library優化紫色桿菌素及黃烷酮類化合物之生產 Improving production of violacein and flavanones using RBS Library |
指導教授: |
沈若樸
Shen, Claire Roa-Pu |
口試委員: |
蘭宜錚
Lan, Ethan 郭家倫 Guo, Gia-Luen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 紫色桿菌素 、黃烷酮類化合物 、序列庫篩選 |
外文關鍵詞: | Violacein, RBS library |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Violacein 和deoxyviolacein為微生物的二級代謝產物,具有抗氧化、抗菌及抗腫瘤等特性,作為天然染料也具有良好的色調及穩定性,這些特點使人們對於生產紫色桿菌素越來越感興趣。然而以往透過微生物生產紫色桿菌素時,都會透過添加色胺酸作為前驅物以提高產量,不過此方式是比較不經濟實惠的,因此本實驗建構了增強色胺酸途徑之質體及菌株,經過測試能在不額外添加色胺酸的條件下增加最終產物紫色桿菌素的產量。接著我們以RBS Library同時調控上下游的基因,再透過呈色法篩選出具有生產潛力之菌株,而這些菌株能達到不同的violacein/deoxyviolacein比例及產量,另外我們也透過再現性測試證實產量及比例改變之主因來自我們所設計之不同RBS序列組合,而非菌株或是基因序列發生突變所致。在經過生產環境的優化之後,violacein及deoxyviolacein最佳生產菌株能在搖瓶中於72小時內分別達到1.6 g/L的violacein及4 g/L deoxyviolacein。此外,我們也將菌株定序確認其RBS序列組合以分析各酵素之初始轉譯速率間的關係,從中發現violacein及deoxyviolacein之優良生產菌株,他們於high copy number及low copy number質體之轉譯速率強度關係具有相似的趨勢。
黃烷酮類化合物為另一種來自植物的二級代謝產物,具有抗氧化、抗發炎及抗癌特性,並且被證實具有治療糖尿病及肥胖等代謝綜合症的藥理活性,在醫藥產業具有一定的發展潛力,同時他們也是其他類似物的重要前驅物及基本骨架,代表可以藉由酵素或化學催化的方法從基本骨架合成其他的衍伸物,這加重了黃烷酮類化合物的重要地位,因此我們希望藉由RBS Library優化其生產,不過這類化合物並沒有像紫色桿菌素具有在顏色方面的優勢以利於篩選,因此我們尋找文獻並選擇生物傳感器做為篩選工具,利用來自H. seropedicae的fde操縱子,fdeR酵素在與柚皮素結合後能夠活化螢光蛋白,使菌落在藍光下具有綠色螢光。而在經過測試及優化後,我們透過生物傳感器系統進行RBS Library之菌落篩選,最後成功挑選到產量提升12倍之菌株。
Violacein and deoxyviolacein which possess anti-fungal, anti-cancer and antibiotic properties are the derivatives of tryptophan. Their colorful appearances also raise interests among dyeing industry. To efficiently produce violacein and its related compounds from simple carbon source, here we aim to fine-tune enzyme expression of both upstream and downstream pathway using RBS library while lowering metabolic burdens inside the cell. We first designed and constructed the RBS library to combine it with tryptophan and violacein producing genes, then screening the potential producing strains by coloring method. In this screening stage, we picked out hundreds of strains that possess different ratio and titer of violacein and deoxyviolacein. After the optimization of production parameters, 1.6 g/L violacein or 4 g/L deoxyviolacein was achieved by best-producer respectively. In addition, we also sequenced to confirm their RBS sequence combination while estimated translation rate using RBS calculator to analysis the regulation and correlation between these enzymes.
Flavanones are another secondary metabolite from plants, which also have multiple biological properties and have been proven to have pharmacological activity in the treatment of metabolic syndromes such as diabetes and obesity. They are also the important precursor and basic skeleton of other analogs, which more accentuate the importance of flavanones. That’s why we want to improve their production, but flavanones does not have the advantage of color like violacein to facilitate screening, so we searched for the screening methods and finally chose biosensor as ours tools. By applying the fde operon from H. seropedicae as our biosensor system, we can see the colonies on the plate have green fluorescence under blue light. After testing and optimization of this biosensor system, we applied RBS Library to the pathway and screened for the better producers, and finally successfully picked up a strain with 12-fold improvement in flavanones titer.
1. Bromberg, N. and N. Durán, Violacein transformation by peroxidases and oxidases: implications on its biological properties. Journal of Molecular Catalysis B: Enzymatic, 2001. 11(4): p. 463-467.
2. Durán, M., et al., Potential applications of violacein: a microbial pigment. Medicinal Chemistry Research, 2012. 21(7): p. 1524-1532.
3. Ferreira, C.V., et al., Molecular mechanism of violacein-mediated human leukemia cell death. Blood, 2004. 104(5): p. 1459-1464.
4. Kodach, L.L., et al., Violacein synergistically increases 5-fluorouracil cytotoxicity, induces apoptosis and inhibits Akt-mediated signal transduction in human colorectal cancer cells. Carcinogenesis, 2005. 27(3): p. 508-516.
5. Suryawanshi, R.K., et al., Towards an understanding of bacterial metabolites prodigiosin and violacein and their potential for use in commercial sunscreens. Int J Cosmet Sci, 2015. 37(1): p. 98-107.
6. Durán, N., et al., Violacein: properties and biological activities. Biotechnol Appl Biochem, 2007. 48(Pt 3): p. 127-33.
7. Shirata, A., et al., Isolation of bacteria producing bluish-purple pigment and use for dyeing. Japan Agricultural Research Quarterly, 2000. 34: p. 131-140.
8. Shirata, A., et al., Production of bluish-purple pigments by Janthinobacterium lividum isolated from the raw silk and dyeing with them. The journal of sericultural science of Japan, 1997. 66: p. 377-385.
9. Rodrigues, A.L., et al., Microbial production of the drugs violacein and deoxyviolacein: analytical development and strain comparison. Biotechnology Letters, 2012. 34(4): p. 717-720.
10. August, P.R., et al., Sequence analysis and functional characterization of the violacein biosynthetic pathway from Chromobacterium violaceum. J Mol Microbiol Biotechnol, 2000. 2(4): p. 513-9.
11. Jiang, P.X., et al., Reconstruction of the violacein biosynthetic pathway from Duganella sp. B2 in different heterologous hosts. Appl Microbiol Biotechnol, 2010. 86(4): p. 1077-88.
12. Patijanasoontorn, B., et al., Hospital acquired Janthinobacterium lividum septicemia in Srinagarind Hospital. J Med Assoc Thai, 1992. 75 Suppl 2: p. 6-10.
13. Ti, T.-Y., et al., Nonfatal and Fatal Infections Caused by Chromobacterium violaceum. Clinical Infectious Diseases, 1993. 17(3): p. 505-507.
14. Rodrigues, A.L., et al., Systems metabolic engineering of Escherichia coli for production of the antitumor drugs violacein and deoxyviolacein. Metab Eng, 2013. 20: p. 29-41.
15. Sun, H., et al., Engineering Corynebacterium glutamicum for violacein hyper production. Microbial Cell Factories, 2016. 15(1): p. 148.
16. Pontrelli, S., et al., Escherichia coli as a host for metabolic engineering. Metabolic Engineering, 2018. 50: p. 16-46.
17. Ikeda, M., Towards bacterial strains overproducing l-tryptophan and other aromatics by metabolic engineering. Applied Microbiology and Biotechnology, 2006. 69(6): p. 615-626.
18. Balderas-Hernández, V.E., et al., Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli. Microbial Cell Factories, 2009. 8(1): p. 19.
19. Fang, M.Y., et al., High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway. Microb Cell Fact, 2015. 14: p. 8.
20. Lee, Y.J., et al., Enzymatic and Microbial Biosynthesis of Novel Violacein Glycosides with Enhanced Water Solubility and Improved Anti-nematode Activity. Biotechnology and Bioprocess Engineering, 2019. 24(2): p. 366-374.
21. Rodrigues, A.L., et al., Systems metabolic engineering of Escherichia coli for gram scale production of the antitumor drug deoxyviolacein from glycerol. Biotechnol Bioeng, 2014. 111(11): p. 2280-9.
22. Jones, J.A., et al., ePathOptimize: A Combinatorial Approach for Transcriptional Balancing of Metabolic Pathways. Sci Rep, 2015. 5: p. 11301.
23. Fang, M., et al., Intermediate-sensor assisted push-pull strategy and its application in heterologous deoxyviolacein production in Escherichia coli. Metab Eng, 2016. 33: p. 41-51.
24. Zhou, Y., et al., Enhanced Production of Crude Violacein from Glucose in Escherichia coli by Overexpression of Rate-Limiting Key Enzyme(S) Involved in Violacein Biosynthesis. Appl Biochem Biotechnol, 2018. 186(4): p. 909-916.
25. Zhang, Y., et al., Direct RBS Engineering of the biosynthetic gene cluster for efficient productivity of violaceins in E. coli. Microbial Cell Factories, 2021. 20(1): p. 38.
26. Yang, D., S.Y. Park, and S.Y. Lee, Production of Rainbow Colorants by Metabolically Engineered Escherichia coli. Adv Sci (Weinh), 2021. 8(13): p. e2100743.
27. Pandey, R.P., et al., Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology. Biotechnology Advances, 2016. 34(5): p. 634-662.
28. Orhan, I.E., et al., Naringenin and atherosclerosis: a review of literature. Curr Pharm Biotechnol, 2015. 16(3): p. 245-51.
29. Liu, H.L., W.B. Jiang, and M.X. Xie, Flavonoids: recent advances as anticancer drugs. Recent Pat Anticancer Drug Discov, 2010. 5(2): p. 152-64.
30. Nishiumi, S., et al., Dietary flavonoids as cancer-preventive and therapeutic biofactors. Front Biosci (Schol Ed), 2011. 3(4): p. 1332-62.
31. Wang, Y., S. Chen, and O. Yu, Metabolic engineering of flavonoids in plants and microorganisms. Appl Microbiol Biotechnol, 2011. 91(4): p. 949-56.
32. N.M. Mol, J., et al., Spontaneous and enzymic rearrangement of naringenin chalcone to flavanone. Phytochemistry, 1985. 24(10): p. 2267-2269.
33. Sharma, K., N. Mahato, and Y.R. Lee, Extraction, characterization and biological activity of citrus flavonoids. Reviews in Chemical Engineering, 2019. 35(2): p. 265-284.
34. Guo, P., et al., Simultaneous quantification of 25 active constituents in the total flavonoids extract from Herba Desmodii Styracifolii by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. J Sep Sci, 2015. 38(7): p. 1156-63.
35. Hwang, E.I., et al., Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster. Appl Environ Microbiol, 2003. 69(5): p. 2699-706.
36. Yan, Y., A. Kohli, and M.A. Koffas, Biosynthesis of natural flavanones in Saccharomyces cerevisiae. Appl Environ Microbiol, 2005. 71(9): p. 5610-3.
37. Wu, G., et al., Metabolic Burden: Cornerstones in Synthetic Biology and Metabolic Engineering Applications. Trends in Biotechnology, 2016. 34(8): p. 652-664.
38. Zhao, S., et al., Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering. Metab Eng, 2015. 28: p. 43-53.
39. Winkel-Shirley, B., Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol, 2001. 126(2): p. 485-93.
40. Yao, L.H., et al., Flavonoids in food and their health benefits. Plant Foods Hum Nutr, 2004. 59(3): p. 113-22.
41. Jones, J.A., et al., Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metab Eng, 2016. 35: p. 55-63.
42. Wu, J., et al., Modular optimization of heterologous pathways for de novo synthesis of (2S)-naringenin in Escherichia coli. PLoS One, 2014. 9(7): p. e101492.
43. Gao, S., et al., Efficient Biosynthesis of (2S)-Naringenin from p-Coumaric Acid in Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 2020. 68(4): p. 1015-1021.
44. Lowry, B., et al., In vitro reconstitution and analysis of the 6-deoxyerythronolide B synthase. J Am Chem Soc, 2013. 135(45): p. 16809-12.
45. Yang, D., et al., Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria. Proc Natl Acad Sci U S A, 2018. 115(40): p. 9835-9844.
46. Kim, K.-H., Regulation of Acetyl-CoA Carboxylase, in Current Topics in Cellular Regulation, B.L. Horecker and E.R. Stadtman, Editors. 1983, Academic Press. p. 143-176.
47. Leonard, E., et al., Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Appl Environ Microbiol, 2007. 73(12): p. 3877-86.
48. Leonard, E., et al., Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Mol Pharm, 2008. 5(2): p. 257-65.
49. Yang, D., et al., Expanded synthetic small regulatory RNA expression platforms for rapid and multiplex gene expression knockdown. Metab Eng, 2019. 54: p. 180-190.
50. Jeschek, M., D. Gerngross, and S. Panke, Rationally reduced libraries for combinatorial pathway optimization minimizing experimental effort. Nature Communications, 2016. 7(1): p. 11163.
51. Wang, R., et al., Design and Characterization of Biosensors for the Screening of Modular Assembled Naringenin Biosynthetic Library in Saccharomyces cerevisiae. ACS Synthetic Biology, 2019. 8(9): p. 2121-2130.
52. Zhou, S., et al., Fine-tuning the (2S)-naringenin synthetic pathway using an iterative high-throughput balancing strategy. Biotechnol Bioeng, 2019. 116(6): p. 1392-1404.
53. Van Brempt, M., et al., Biosensor-driven, model-based optimization of the orthogonally expressed naringenin biosynthesis pathway. Microbial Cell Factories, 2022. 21(1): p. 49.
54. Gao, S., et al., Efficient Biosynthesis of (2S)-Eriodictyol from (2S)-Naringenin in Saccharomyces cerevisiae through a Combination of Promoter Adjustment and Directed Evolution. ACS Synth Biol, 2020. 9(12): p. 3288-3297.
55. Yang, C., et al., Fed-batch fermentation of recombinant Citrobacter freundii with expression of a violacein-synthesizing gene cluster for efficient violacein production from glycerol. Biochemical Engineering Journal, 2011. 57: p. 55-62.
56. Mendes, A.S., et al., Factorial design and response surface optimization of crude violacein for Chromobacterium violaceum production. Biotechnology Letters, 2001. 23(23): p. 1963-1969.
57. Sánchez, C., et al., Reevaluation of the violacein biosynthetic pathway and its relationship to indolocarbazole biosynthesis. Chembiochem, 2006. 7(8): p. 1231-40.
58. Salis, H.M., E.A. Mirsky, and C.A. Voigt, Automated design of synthetic ribosome binding sites to control protein expression. Nature biotechnology, 2009. 27(10): p. 946-950.
59. Salis, H.M., The ribosome binding site calculator. Methods Enzymol, 2011. 498: p. 19-42.
60. Pantanella, F., et al., Violacein and biofilm production in Janthinobacterium lividum. J Appl Microbiol, 2007. 102(4): p. 992-9.
61. Browning, D.F., et al., Escherichia coli "TatExpress" strains super-secrete human growth hormone into the bacterial periplasm by the Tat pathway. Biotechnol Bioeng, 2017. 114(12): p. 2828-2836.
62. Cui, H., et al., Microbial production of O-methylated flavanones from methylated phenylpropanoic acids in engineered Escherichia coli. J Ind Microbiol Biotechnol, 2019. 46(12): p. 1707-1713.
63. Siedler, S., et al., Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli. Metab Eng, 2014. 21: p. 2-8.
64. Wassem, R., et al., A NodD-like protein activates transcription of genes involved with naringenin degradation in a flavonoid-dependent manner in Herbaspirillum seropedicae. Environ Microbiol, 2017. 19(3): p. 1030-1040.