研究生: |
李家勇 Lichiayung |
---|---|
論文名稱: |
年級與性別對國小學生在「燃燒」相關概念學習的影響 The Influence of Grade Level and Gender on Primary School Students’ Understanding of Burning |
指導教授: | 王姿陵 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
中文關鍵詞: | 跨年級研究 、燃燒概念 、概念理解 、另有概念 |
外文關鍵詞: | cross-grade study, concept of burning, understanding of concepts, alternative conceptions |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本研究採用跨年級研究,探討年級與性別對學生在「燃燒」概念理解的影響與另有概念類型之現況。研究樣本為新竹縣市四所都市型公立國民小學五到六年級學生,包含五年級學生278人、六年級學生307人,共計585人(男318人,女267人),研究工具為「燃燒」概念二階診斷測驗。資料分析方法包含描述統計(Descriptive statistics)、邏輯式迴歸分析(Logistic Regression)、次數分配(Frequency)。
本研究的重要發現如下:
一、年級對學生在燃點、移除可燃物及隔絕助燃物的概念理解皆有顯著影響,年級越高學生在「燃燒」的概念理解越好。
二、性別對學生在可燃物、燃點、隔絕助燃物及降低溫度的概念理解沒有顯著影響;性別對學生在助燃物及移除可燃物的概念理解有顯著影響,在助燃物概念的方面,男生顯著優於女生;在移除可燃物概念的方面,女生顯著優於男生。
三、關於「燃燒」相關概念學習,學生在可燃物概念的理解困難度較低,在燃點、隔絕助燃物、助燃物及降低溫度概念的理解困難度較高,在移除可燃物概念的理解困難 度最高。
四、不同年級和性別的學生在「燃燒」各單元主概念仍存有一些共同另有概念類型,這些共同另有概念類型主要集中情形之現況如下:
(一)可燃物概念:大多集中的類型是認為用火燒石頭,石頭會變熱,所以只要時間久一點就會燃燒。
(二)助燃物概念:五年級學生大多集中的類型是認為二氧化碳可以幫助物質燃燒,因為二氧化碳中含有氧的成分。六年級和男女學生大多集中的類型是認為二氧化碳可以幫助物質燃燒,因為二氧化碳中含有氧的成分;和認為二氧化碳可以幫助物質燃燒,因為空氣可以幫助物質燃燒,而空氣中也有二氧化碳。
(三)燃點概念:大多集中的類型是認為燃燒一定要點火,因為沒有火,物質就無法燃燒;和認為燃燒一定要點火,因為有火才能使溫度上升。
(四)移除可燃物概念:大多集中的類型是認為對燃燒中的蠟燭用力吹一口氣,蠟燭會媳滅,因為吹氣會產生二氧化碳包圍火焰。
(五)隔絕助燃物概念:大多集中的類型是認為土或沙子能被用來滅火,因為土或沙子可以把火困住,使火不能向外燃燒,而熄滅。
(六)降低溫度概念:五、六年和男學生大多集中的類型是認為水能被用來滅一般火災,因為火怕水是自然現象;和認為水能被用來滅一般火災,因為水本身不能燃燒。女學生大多集中的類型是認為水能被用來滅一般火災,因為火怕水是自然現象。
關鍵詞: 跨年級研究、燃燒概念、概念理解、另有概念
Abstract
This is a cross-grade study which explores the influence that grade level and gender on students’ understanding of the burning and the current situation of alternative conceptions. The research samples were taken from fifth and sixth graders at four urban public primary schools in Hsinchu City , Taiwan. There were a total of 585 participants (318 male students and 267 female students), 278 of which were fifth graders and 307 of which were sixth graders. A two-tier diagnostic instrument of conceptions about ‘burning’ was employed. The data analysis methods included descriptive statistics, logistic regression and frequency.
The important discoveries of this study are as follows:
1. Grade levels had a significant influence on students’ understanding of burning, removing combustible materials and isolating comburents. The higher the student’s grade level was, the better their understanding of the concept of ‘burning’ was.
2. While gender did not have any significant influence on students’ understanding of the concepts of combustible materials, ignition points, isolating comburents and temperature decreases, gender did have a significant influence on students’ understanding of the concepts of comburents and removing combustible materials. Male students performed better in the concept of comburents while female students fared better in the concept of removing combustible materials.
3. In regard to the learning of concepts related to ‘burning’, students found it less difficult to understand the concept of burning. However, it was harder for these students to understand the concepts of ignition points, isolating comburents, comburents and temperature decreases. The concept of removing combustible materials was most difficult to comprehend.
4. There were some shared alternative conceptions among students of different grades and gender regarding the major concepts of each chapter. Below are the major types of alternative conceptions:
(i) The concept of combustion: The most common misconception was the idea that because burning a rock would increase its temperature, if the burning time is long enough, the rock will start to burn.
(ii) The concept of comburents: The fifth graders students generally believed that carbon dioxide supports combustion since carbon dioxide consists of oxygen. The sixth graders and both male and female students generally believed that carbon dioxide supports combustion since carbon dioxide consists of oxygen; and that carbon dioxide supports combustion as air, which consists of carbon dioxide, supports combustion.
(iii) The concept of burning: The most common misconception was the idea that burning must involve the ignition of fire as materials do not burn in the absence of fire; and that burning must involve the ignition of fire since fire can increase the temperature.
(iv) The concept of removing comburents: The most common misconception was the idea that blowing at a burning candle will put out the candle as the exhaled air generates carbon dioxide which encircles the fire.
(v) The concept of isolating comburents: The most common misconception was the idea that soil or sand can be used to put out fires as soil or sand can enclose the fire so that it cannot burn because of the lack of space.
(vi) The concept of decreases in temperature: The fifth and sixth graders as well as the male students generally believed that water can be used to extinguish fires in general, fear of water because the fire is a natural phenomenon; and that the water can be used to extinguish fires in general, because the water itself does not burn. The female students generally believed that water can be used to extinguish fires in general, fear of water because the fire is a natural phenomenon.
Keywords: cross-grade study, concept of burning, understanding of concepts, alternative conceptions
參考文獻
一、中文部分
王文科 (1996)。教育研究法。台北:五南。
王光平 (2005)。以概念構圖之動畫評量策略探究國小六年級學童「燃燒」概念的概念學習。未出版之碩士論文,國立台北師範學院自然科學教育研究所,台北市。
王貴春、黃萬居 (1999)。師院生對氧化還原之迷思概念研究。科學教育研究與發展季刊,15,19-38。
王瓏真 (2003)。中小學生對於燃燒之迷思概念研究。國立台中師範學院自然科學教育學系碩士班碩士論文,台中市。
吳明清 (1991)。教育研究-基本觀念與方法分析。台北:五南圖書出版公司。
吳裕益 (1993)。台灣地區國民小學學生學業成就調查分析。初等教育學報,6,1-33。
吳春慧 (2010)。數學和科學領域I/E模式的探討:跨性別之研究。屏東教育大學學報-教育類,34,67-82。
李錦坤 (2005)。網路化科學推理學習對國小學生燃燒概念重建與推理能力推昇之影響。未出版之碩士論文,國立交通大學理學院碩士班在職專班網路學習主,新竹市。
周育本 (2005)。國小學童知覺自然科教師態度、學習自然科態度與自然科學習成就之相關研究。未出版之碩士論文,國立嘉義大學科學教育研究所,嘉義市。
林忠立 (2008)。問題解決融入教學對學童科學概念改變機制之研究-¬¬¬以酸鹼概念為例。未出版之碩士論文,國立嘉義大學科學教育研究所,嘉義市。
林栢裕 (2010)。國民中學「自然科」學習成就之研究¬¬-以苗栗縣建國國中為例。未出版之碩士論文,玄奘大學公共事務管理學系碩士,新竹市。
張世忠 (1997)。建構主義與科學教學。科學教育月刊,202,16-23。
張靜嚳 (1996)。建構教學:採用建構主義如何教學?。建構與教學,7 ,彰化師大科教中心。
張玉燕 (1996)。建構導向的教學經營-以自然科為例。國教月刊,43(12),7-17。
張容君、張惠博 (2007)。國中學生「燃燒」概念診斷之研究。科學教育學刊,15(6),671-701。
教育部 (2010)。國民中小學九年一貫課程綱要自然與生活科技學習領域。台北市:教育部。
邱文鳳 (2012)。問題本位學習對國小六年級學童燃燒概念改變之影響。未出版之碩士論文,中原大學教育研究所,桃園市。
邱美虹 (1993)。科學教科書與概念改變。科學教育月刊,163,2-8。
邱美虹 (2000)。概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。
邱雅綺 (2006)。學生性別與對自然科學習態度及學習成效之探究。未出版之碩士論文,台北市立教育大學科學教育研究所,台北市。
黃台珠 (1984)。概念的研究及其意義。科學教育月刊,66,44-51。
黃萬居 (1994)。國小高年級學生的認知階層與酸鹼概念之研究。臺北市立師範學院學報,25,1-35。
楊龍立 (1990)。中小學生在科學成就及對科學的態度中性別差異的探討。台灣師範大學教育研究所博士論文,台北市。
楊坤霖 (2003)。國民小學中年級學童自然科學業成就與其相關因素之研究以彰化縣為例。台中師範學院碩士論文,台中。
曾燕玲 (2006)。5E學習環教學對國小六年級學童燃燒概念改變之研究。未出版之碩士論文,國立台北市立教育大學科學教育研究所,台北市。
趙素敏 (2003)。國小學童酸鹼迷思概念類型與成因之研究。未出版之碩士論文,國立台北市立師範學院科學教育研究所,台北市。
歐陽鍾仁 (1988)。科學教育概論(2版)。台北市:五南。
郭重吉(1988)。從認知觀點探討自然科學的學習。教育學院學報,13,352-378。
郭國成 (2002)。國小學童「燃燒」概念另有概念之研究。未出版之碩士論文,國立屏東師範學院數理教育研究所,屏東縣。
陳瓊森(1998)。從建構主義觀點談概念形成及概念轉變。國民中學學生概念學習學術研討會論文彙編,39-50。
龍麟如 (1997)。國小學生對科學的態度與相關變項關係之研究。國立臺灣師範大學生物研究所碩士論文,台北市。
謝志仁 (1992)。國中學生化學變化相關概念另有架構之研究。未出版之碩士論文,國立彰化師範大學科學教育研究所,彰化市。
蔣盈姿 (2004)。以POE策略探究中小學生對物質「可燃性」的另有概念。未出版之碩士論文,國立台中師範學院自然科學教育學系,台中市。
鄭豐順 (1997)。國中學生燃燒概念之診斷研究與探討。未出版之碩士論文,國立台灣師範大學化學學系研究所,台北市。
鐘培齊 (2003)。國小六年級學童學習風格、知覺學習環境、對科學的態度與自然科學業成就之相關研究。未出版之碩士論文,國立嘉義大學國民教育研究所,嘉義市。
二、外文部分
Abraham, M. R., Grzybowski, E. B., Renner, J. W., & Marek, E. A. (1992). Understandings and misunderstandings of eighth graders of five chemistry concepts found in textbooks. Journal of Research in Science Teaching, 29, 105-120.
Abraham M. R., & Williamson, V. M. (1994). Across-age study of the understanding of five chemistry concepts. Journal of Research in Science Teaching, 31, 147-165.
Abimbola, I. O. (1988). The problem of terminology in the study of student conceptions in science. Science Education, 72(2), 175-184.
Ausubel, D. P . (1968). Educational psychology: A cognitive view. New York:Holt, Rinehart, and Winston.
Andersson, B. (1986). Pupils’ explanations of some aspects of chemical reactions. Science Education, 70(5), 549-563.
Bybee, R. W., & van Scotter, P. (2006). Reinventing the science curriculum. Educational Leadership, 64(4), 43-47.
Bodner, G. M. (1986). Constructivism: A theory of knowledge. Journal of Chemical Education, 63(10), 873-878.
Boo, Hong Kwen (1995). A burning issue for chemistry teachers teaching and learning, 15(2), 52-60.
Boujaoude, S. B. (1989). A study of conceptual change in junior high school science students during instruction about the concept of burning. Unpublished doctoral dissertation, University of Cincinnati, Ohio. Retrieved from UMI No.8903612.
Boujaoude, S. B. (1991). A study of the nature of students’ understandings about the concept of burning. Journal of Research in Science Teaching, 28(8), 689-704.
Becker, B. J. (1989). Gender and Science achievement: A reanalysis of studies from two meta-analysis. Journal of Research in science teaching, 26, 141-169.
Cepni, S., Tas, E., & Kose, S. (2006). The effects of computer-assisted material on students’ cognitive levels, misconceptions and attitudes towards science. Computers & Education, 46(2), 192-205.
Canpolat, N. (2006). Turkish undergraduates misconceptions of evaporation, evaporation rate, and vapour pressure. International Journal of Science Education, 28(15), 1757-1770.
Chandrasegaran AL, Treagust D.F. Mocerino, M. (2007). The development of a two-tier multiple-choic diagnostic instrument for evaluating secondary school students’ ability to describe and explain chemical reactions using multiple levels of representation. Education Research Practice, 8(3), 2993-307.
Chi, M. T. H. (2005). Commonsense conceptions of emergent processes: Why some misconceptions are robust. Journal of the Learning Sciences, 14, 161-199.
Cobern, W. W. (1993). Contextual constructivism: The impact of culture on the learning and teaching of science. In K. G. Tobin(Ed). The Practice of Construction in Science Education(pp.51-70). Washington, D. C. : AAAS Press.
Cohen, Louis; Manion, Lawrence; & Morrison, Keith. (2000). Research Methods in Education. London and New York: Routledge Falmer.
Chiu, M.-H., & Lin, J.-W. (2008). Research on learning and teaching of students’ conceptions in science: A cognitive approach review. In I. V. Eriksson (Ed.), Science education in the 21st century (pp. 291-316). New York, NY: Nova Science.
Centra, J.A. & Potter, D.A. (1980). School and teacher effects: An interrelational model. Review of Education Research, 50(2), 273 -291.
Driver, R. (1983): The pupil as scientist. – Milton Keynes: Open University Press.
Driver, R., Leach, J., Scott, P., & Wood-Robinson, C. (1994). Young people’s understanding of science concepts: Implications of cross-age studies for curriculum planning. Studies in Science Education, 24, 75-100.
Driver, R., & Easley, J., (1978). Pupils and Paradigms: A Review of literature related to concept development and adolescent science studies, Studies in Science Education, 5, 61-84.
Driver, R., (1989).Changing conceptions.In P. Adey(Ed.), Adolescent development and school science(pp.79-99). London: Falmer.
Duit, R., & Treagust, D. F. (1995). Students’ conceptions and constructivist teaching approaches. In B. J. Fraser & H. J. Walberg(Eds.), Improving science education, (pp.46-69). Chicago, Illinois: The National Society for the Study of Education.
Fisher, K. M. (1985). A miscoception in biology: Aminoacids and translation. Journal of Research in Science Teaching, 22(1), 53-62.
Fosnot, C. T. (1989). Enquiring teachers, enquiring learners: a constructivist approach for teaching. New York: Teachers Colleges Press.
Gabel, D. L., & Bunce, D. M. (1994). Research in problem solving: Chemistry. In D. L. Gabel
(Ed.), Handbook of research in science teaching and learning(pp.301-326). New York: Macmillan.
Gabel, D. L. (2001). Changing children's conceptions of burning. School Science and Mathematics, 101(8), 439-451.
Hewson, P. W. (1981). A conceptual change approach to learning science. European Journal of Science Education, 3, 383-396.
Hesse, J. J., & Anderson, C. W. (1992).Students’conception of chemical change. Journal of Research in Science Teaching, 29(3), 277-299.
Kelly, G. A. (1965). The psychology of personal constructs. (Vol.1&2). New York: Notorn.
Kanari, Z., & Millar, R. (2004). Reasoning from data: how students collect and interpret data in science investigations. Journal of Research in Science Teaching, 41(7), 748-769.
Lecoutre, M. P. (1992). Cognitive models and problem spaces in “purely random” situations. Educational Studies in Mathematics, 23, 557-568.
Lee, O., Eichinger, D. C., Anderson, C. W., Berkheimer, G. D., & Blakeslee, T. D. (1993). Changing middle school students' conceptions of matter and molecules. Journal of Research in Science Teaching, 30, 249-270.
Marek, E., & Methven, S. (1991). Effects of the learning cycle upon student and classroom teacher performance. Journal of Research in Science Teaching, 28(1), 41-53.
McCloskey, M. (1983). Naïve theories of motion. In D.Gentner & A. L. Stevens (Eds.), Mentalmodels, 299-324. Hillsdale, NJ: Lawrence Erlbaum Associates.
Meheut, M., Saltiel, E., & Tiberghien, A. (1985). Pupils’ (11-12 years old) conceptions of combustion. Europeanan of Journal Science Education, 7(1), 83-93.
Nussbaum, J. & Novick, S. (1982). Alternative frameworks, conceptual conflict and accommodation: Towards a principled teaching strategy. Instructional Science, 11, 183-200.
Novak, J. (1988). Learning science and the science of learning. Studies in Science Education, 15, 77-101.
Novak, J. D., & Gowin, D. B. (1984). Learning how to learn. Cambridge, UK: Cambridge University Press.
Osborne, R. J., & Wittrock. M. C. (1983). Learning science: A generative process. Science education, 67, 489-508.
Osborne, R. J., & Gilbert, J. K. (1980). A technique for exploring students’ views of the world. Physics Education, 15 , 376-379.
Özmen, H (2011). Effect of animation enhanced conceptual change texts on 6th grade students’ understanding of the particulate nature of matter and transformation during phase changes. Computers & Education. 57, 1114-1126.
Piaget, J. (1964). PartI: Cognitive development in children: Piaget development and learning. Journal of research in science teaching, 2(3), 176-186.
Palmer, D. H., & Flanagan, R. B.(1997). Readiness to change the conception that “motion- implies-force”: A comparison of 12-year-old and 16-year-old students. Science Education, 81(3), 317-331.
Prieto, T., Watson, R., & Dillon, J. S. (1992). Pupils’ understanding of combustion. Research in Science Education, 22, 331-340.
Rogoff, B. (1990). Apprenticeship in thinking: Cognitive development in social context. New
York: Oxford University Press.
Rahayu, S., & Tytler, R. (1999). Progression in primary school children’s conception of burning:toward an understanding of the concept of the concept of substance. Research in Science Education, 29(3), 295-312.
Reynolds, A. J., & Walberg, H. J. (1991). A structural model of science achievement. Journal of educational psychology, 83, 1 ,97-107.
Shepherd, D. L., & Renner, J. W. (1982). Students’ understandings and misunderstandings of the states of matter and density changes. School Science and Mathematices, 82(8), 650-665.
Sanger, M. J., & Greenbowe, T. J. (1997). Students’ misconceptions in electrochemistry: Current Flow in electrolyte solutions and the salt bridge. Journal of Chemical Education, 74, 819-823.
Stepans, J. I. (1991). Developmental patterns in students’ understanding of physics concepts. In S. M. Glynn, R. H. Yeany & B. K. Britton(Eds.), The psychology of learning science (pp.89-115). Mahwah, New Jersey: Lawence Erlbaum Associates.
Tobin, K., & Tippins, D. (1993). Constructivism as a referent for teaching and learning. In K.,
Tobin (Ed.). The practice of constructivism in science education (Preface: ix-xvi), Washington, DC: AAAS.
Tenenbaum, H. R., & Leaper, C. (2003). Parent-Child conversations about science: The socialization of gender inequities? Development Psychology, 39, 1, 34-47.
Vygotsky, L. S. (1962). Thought and language. Cambridge, MA: MIT Press.
Von Glasersfeld, E. (1981). An introduction of knowledge: Contributions to conceptual semantices. Seaside, California: Intersystem Publications.
Wandersee, J. H, Mintzes. J. J., & Novak. J. D. (1994). Research on alternative conceptions
in science. InD. L. Gabel, (Ed.). Handbook of Research on Science Teaching and Learning, New York: Macmillan Publishing Company.
Wheatley, G. H. (1991). Constructivist perspectives on science and mathematics learning. Science Education, 75 (1) , 9-21.
Waston, J. R., Teresa, P., & Dillon, J. S. (1995). The effect of practical work on students' understanding of combustion. Journal of Research in Science Teaching, 32 (5), 487-502.
Yarroch, W. L. (1985). Student understanding of chemical equation balancing. Journal of Research in Science Teaching, 22, 449-459.
Yager, R. (1991). The constructivist learning model, towards real reform in science education . The Science Teacher, 58 (6), 52-57.
Zacharia, Z. C. (2007). Comparing and combining real and virtual experimentation: an effort to enhance students' conceptual understanding of electric circuits. Journal of Computer Assisted Learning, 23(2), 120-132.
Zacharia, Z. C., & Olympiou, G. (2011). Physical versus virtual manipulative experimentation in physics learning. Learning & Instruction, 21, 317-331.