研究生: |
黃尚峰 Shang-Feng Huang |
---|---|
論文名稱: |
不同熱處理對鐵離子佈植矽基板微結構的影響 Effect of Different Annealing Processes on Microstructure of Fe Implanted Silicon Substrate |
指導教授: |
蔡哲正
Prof. Cho-Jen Tsai |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 離子佈植 、鐵矽化物 、共鍍 |
外文關鍵詞: | Implantation, Iron disilicide, Co-sputtering |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
具有半導體性質的鐵矽化物(β-FeSi2)在近十年獲得了很大的注意,因為有研究顯示,它具有0.8eV的直接能隙,可以發出波長約1.55μm的光。利用這個性質,我們便可以合成矽基材料的紅外線發光元件(IR-Light emitting device, IR-LED)或紅外線感測器(IR Sensor)。但是有關其發光性質仍然有許多爭議,M. G. Grimaldi et al.認為β-FeSi2析出物的發光性質與它的形成位置有很大的關係,因此本實驗的目的即是利用各種不同的熱處理方法,看是否可以在不同的位置上形成β-FeSi2析出物。
目前利用離子佈植技術來合成β-FeSi2析出物者,大都會在離子佈植期間將靶材加熱,之後在830oC持溫18小時以上後,便可以在基材內部獲得β-FeSi2析出物。而我們的實驗則是在室溫情況下進行離子佈植,之後同樣830oC持溫18小時,從TEM影像可以觀察到β-FeSi2析出物是在表面形成。這是因為在離子佈植時加熱靶材可以使基板不被非晶質化,而鐵原子在非晶矽的擴散係數大於晶體矽的,所以造成我們的鐵原子都會先擴散到表面後再形成β-FeSi2析出物。因此我們接下來會先利用低溫固態磊晶方法來回覆非晶矽,之後再升到高溫形成β-FeSi2析出物,來看看它的形成位置會不會有什麼不一樣。
共鍍(Co-sputtering)技術也會被用來合成β-FeSi2析出物。因為離子佈植最後都避不了會形成缺陷如差排環等,我們會利用離子槍來共鍍鐵矽,而為了要避免鐵及矽的氧化,最後還會蓋上一層鍺,之後經過同樣的熱處理後,我們會發現鍺的存在會使得β-FeSi2析出物的形成延遲發生。
Semiconducting β-FeSi2 have attracted great attention in the recent decade. Because it has a direct band-gap of about 0.8eV, and it can emit a light of 1.55μm. With this property, silicon based IR-LED(Light emitting device) and IR-Sensor can be synthesized. But its optical property is still controversial, M. G. Grimaldi et al. suggested that the luminescence of β-FeSi2 precipitates is related to its location. So that our study is using a variety of annealing process to see if we can control the location of β-FeSi2 precipitates.
The general method of ion beam synthesized(IBS) β-FeSi2 precipitates is to heat target during ion implantation. After annealing at 830oC for 18 hours, β-FeSi2 will precipitate inside specimen. In our experiment, ion implantation will be carried out under room temperature. After annealing at 830oC for 18 hours, we can observe β-FeSi2 precipitates close to surface by TEM images. Because heating of target can avoid the amorphization of silicon substrate, and the diffusivity of Fe atom in amorphous silicon is larger than in crystal silicon.. This fact will result in diffusion of Fe atoms to surface before precipitation of β-FeSi2. In the next experiment, the low temperature solid phase epitaxy will be conducted before annealing at 830oC for 18 hours. Likewise, the location of β-FeSi2 precipitates will be observed.
We also synthesized β-FeSi2 precipitates by co-sputtering. Samples of IBS always produce defects like dislocation loops. Presentation of defects is also harmful to the luminescence of β-FeSi2 precipitates. Ion gun will be used to co-sputtering Fe-Si atoms onto Si(001) wafer. In order to avoid oxidation of Fe and Si atoms, a thickness of about 50nm Germanium layer will be capped on our sample. After different annealing process, the retardation of transformation of Fe silicide by presentation of Ge layer will be observed.
【1】S. Santucci, L. Lozzi, M. Passacantando, P. Picozzi, P. Petricola, G. Moccia, R. Alfonsetti, and R. Diamanti, J. Vac. Sci. Technol. A 16, 1207 (1998).
【2】Jun Amano, P. Merchant, T. R. Cass, J. N. Miller, and Tim Koch, J. Appl. Phys. 59, 2689 (1986).
【3】K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, and G. Ulm, Appl. Phys. Lett. 69, 3662 (1996).
【4】S. Papatzika, N. A. Hastas, C. T. Angelis, C. A. Dimitriadis, G. Kamarinos, and J. I. Lee, Appl. Phys. Lett. 80, 1468 (2002).
【5】P. Giordano, J. P. Gonchond, J. C. Oberlin, P. Normandon, R. Basset, and A. Chantre, Appl. Phys. Lett. 54, 2429 (1989).
【6】V. Bellani, G. Guizzetti, F. Marabelli, A. Piaggi, A. Borghesi, F. Nava, V. N. Antonov, Vl. N. Antonov, O. Jepsen, O. K. Andersen, and V. V. Nemoshkalenko, Phys. Rev. B 46, 9380 (1992).
【7】V. K. Zatsev, S. V. Ordin, V. I. Tarasov, and M. I. Fedorov, Sov. Phys. Solid State 21, 1454 (1979).
【8】M. Rebien, W. Henrion, H. Angermann, and S. Teichert, Appl. Phys. Lett. 81, 649 (2002).
【9】Lianwei Wang, Linhong Qin, Yuxiang Zheng, Wenzhong Shen, Xiangdong Chen, Xian Lin, Chenglu Lin, and Shichang Zou, Appl. Phys. Lett. 65, 3105 (1994).
【10】Castor Fu, M. P. C. M. Krijn, and S. Doniach, Phys. Rev. B 49, 2219 (1994).
【11】Y. Dusausoy, J. Protas, R. Wandji, and B. Roques, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 27, 1209 (1971).
【12】M. E. Schlesinger, Chem. Rev. 90, 607 (1990).
【13】V. Darakchieva, M. Baleva, M. Surtchev, and E. Goranova, Phys. Rev. B 62, 13 057 (2000).
【14】L. Wang, L. Qin, Y. Zheng, S. Shen, X. Chen, X. Lin, C. Lin, and S. Zou, Appl. Phys. Lett. 65, 3105 (1994).
【15】Z. Yang and K. P. Homewood, J. Appl. Phys. 79 (8), 15 April 1996
【16】K. Lefki, P. Muret, N. Cherief, and R.C. Cinti, J. Appl. Phys. 69, 352 (1991).
【17】L.Wang, M. Ostling, K. Yang, L. Qin, C. Lin, X. Chen, S. Zou, Y. Zheng, and Y. Qian, Phys. Rev. B 54, R11 126 (1996).
【18】M. Rebien, W. Henrion, U. Mu¨ller, and S. Gramlich, Appl. Phys. Lett. 74, 970 (1999).
【19】E. Arushanov, E. Bucher, C. Kloc, O. Kulikova, L. Kulyuk, and A. Siminel, Phys. Rev. B 52, 20 (1995).
【20】A.B. Filonov, D.B. Migas, V.L. Shaposhnikov, N.N. Dorozhkin, G.V. Petrov, V.E. Borisenko, W. Henrion, and H. Lange, J. Appl. Phys. 79, 7708 (1996).
【21】K. Rademacher, R. Cariusm, and S. Mantl, Nucl. Instrum. Methods Phys. Res. B 84, 163 (1994).
【22】C. Giannini, S. Lagomarsino, F. Scarinci, and P. Castrucci, Phys. Rev. B 45, 8822 (1992).
【23】D. N. Leong, M. A. Harry, K. J. Reeson, and K. P. Homewood, Nature (London) 387, 686 (1997).
【24】M. G. Grimaldi, S. Coffa, C. Spinella, F. Marabelli, M. Galli, L. Miglio, V. Meregali, J. Lumin. 80, 467(1999).
【25】K. Oyoshi, D. Lessen, R. Carius, S. Mantl, Thin Solid Films, 381, 202(2001).
【26】B. Schuller, R. Carius, S. Lenk, S. Mantl, Microelectronic Engineering, 60, 205(2002).
【27】C. Spinella, S. Coffa, C. Bongiorno, S. Pannitteri, M. G. Grimaldi, Appl. Phys. Lett. 76, 173(2000).
【28】K. P. Homewood, K. J. Reeson, R. M. Gwilliam, A. K. Kwell, M. A. Lourenco, G. Shao, Y. L. Chen, J. S. Sharpe, C. N. McKinty, T. Butler, Thin Solid Films 381, 188(2001).
【29】M. A. Lourenco, T. M. Butler, A. K. Kewell, R. M. Gwilliam, K. J. Kirkby, K. P. Homewood, Nucl. Instrum. Meth. Phys. Res. B 175-177, 159(2001).
【30】T. Suemsdu, Y. Negishi, K. Takakura, and F. Hasegawa, Jpn. J. Appl. Phys., part 2 39, L1013 (2000).
【31】T. Suemasu, Y. Iikura, K. Takakura, F. Hasegawa, J. Lumin. 87-89, 528(2000).
【32】T. Suemasu, Y. Iikura, T. Fujii, K. Takakura, N. Hiroi and F. Hasegawa, Jpn. J. Appl. Phys. 38, L60(1999).
【33】T. Suemasu, M. Tanaka, T. Fujii, S. Hashimoto, Y. Kumagai and F. Hasegawa, Jpn. J. Appl. Phys. 38, L1225(1995).
【34】T. Suemasu, T. Fujii, Y. Iikura, K. Takakura and F. Hasegawa, Jpn. J. Appl. Phys. 37, L1513(1998).
【35】張俊彥, “積體電路製程及設備技術手冊”, 經濟部技術處, P275, 1997年7月.
【36】J. Y. Natoli, I. Berbezier, A. Ronda, J. Derrien, J. Crystal Growth, 146, 444 (1995).
【37】Christian Erich Zybill, Wei Huang, Inorganica Chemica Acta, 291, 380 (1999).
【38】Zhengxin Liu, Motoki Watanabe, Mitsugu Hanabusa, Thin Solid Films, 381, 262 (2001).
【39】A. G. Birdwell, R. Glosser, D. N. Leong, and K. P. Homewood, J. Appl. Phys., 89, No. 2, 965 (2001).
【40】N. E. Christensen, Phys. Rev. B 42, 7148 (1990).
【41】M. G. Grimaldi, C. Bongiorno, C. Spinella, E. Grilli, L. Martinelli, M. Gemelli, D. B. Migas, and Leo Miglio, Phys. Rev. B 66, 085319 (2002).
【42】D. Sander, A. Enders, and J. Kirschner, Appl. Phys. Lett. 67, 1833 (1995).
【43】K. Herz, M. Powalla, and A. Eicke, Phys. Status Solidi A 156, 3(1997).
【44】L. Martinelli, E. Grilli, D. B. Migas, Leo Miglio, F. Marabelli, C. Soci, M. Geddo, M. G. Grimaldi, and C. Spinella, Phys. Rev. B 66, 085320 (2002).
【45】S. J. Clark, H. M. Al-Allak, S. Brand, and R. A. Abram, Phys. Rev. B 58, 10389 (1998).
【46】T. SuemasuU, T. Fujii, K. Takakura, F. Hasegawa, Thin Solid Films, 381, 209 (2001).
【47】A. G. Birdwell, R. Glosser, D. N. Leong, and K. P. Homewood, J. Appl. Phys. 89, 965 (2001).
【48】Aiko Narazaki, Tadatake Sato, Yoshizo Kawaguchi, and Hiroyuki Niino, Appl. Phys. Lett. 83, 3078 (2003).
【49】Yoshihito Maeda, Kenji Umezawa, Yoshikazu Hayashi, Kiyoshi Miyake, Thin Solid Films, 381, 219 (2001).
【50】B. Schuller, R. Carius, and S. Mantl, J. Appl. Phys. 94, 207 (2003).
【51】J. P. de Souza, L. Amaral, and P. F. P. Fichtner, J. Appl. Phys. 71, 5423 (1992).
【52】W. Snetake and J. T. Yates. Jr., Surface Infrared and Raman Spectroscopy: Methods and Applications, Plenum, New York, (1995).
【53】R. G. Wilson, F. A. Stecie, V. W. Magee, Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, Wiley, New York (1989).
【54】G. Thomas and M. J. Goringe, Transmission Electron Microscopy of Materials, Wiley, New York (1979).
【55】J. Narayan, C. W. White, O. W. Holland, and M. J. Aziz, J. Appl. Phys. 56, 1821 (1984).
【56】 J. Narayan, C. W. White, M. J. Aziz, B. Stritzker, and A. Walthuis, J. Appl. Phys. 57, 564 (1985).
【57】 P. W. Wang, H. S. Cheng, W. M. Gibson, and J. W. Corbett, J. Appl. Phys. 60, 1336 (1986).
【58】H. C. Cheng, T. R. Yew, and L. J. Chen, J. Appl. Phys. 57, 5246 (1985).
【59】S. S. Lau, J. S. Y. Feng, and J. O. Olowolafe, M. A. Nicolet, Thin Solid Films 25, 415 (1975).
【60】 H. C. Cheng, L. J. Chen, and T. R. Your, Mater. Res. Soc. Symp. Proc. 25, 441 (1984).
【61】V. E. Borisenko, Semiconducting silicides, Chap. 4, Springer (2000).
【62】T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak (Ed.) Binary Alloy Phase Diagrams, Second Edition (American Society for Metals. Metals Park, OH, 1990), vols. 1-2.