研究生: |
石糧豪 Shih, Liang-Hao |
---|---|
論文名稱: |
學生形成論證的教師支持性行為:新竹與浙江數學課堂比較 Teacher Support for Argumentation: Comparison between Hsinchu and Zhejiang Mathematics Class |
指導教授: |
林碧珍
Lin, Pi-Jen |
口試委員: |
蔡文煥
Tsai, Wen-Huan 林勇吉 Lin, Yung-Chi |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 數理教育研究所 Graduate Institute of Mathematics and Science Education |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 187 |
中文關鍵詞: | 兩岸 、數學論證 、教師支持性行為 |
外文關鍵詞: | China and Taiwan, mathematical argumentation, teacher support |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
數學論證在課室中的發展,隨著教育改革的腳步,在數學教育上已逐漸獲得重視,兩岸亦不例外,在其教育政策上皆強調論證對於學習的作用。本研究目的在於探討兩岸教師在數學課堂中,對於學生形成數學論證時的支持性行為有何特徵。本研究採個案研究法,選擇參與兩岸「素養導向論證與推理課堂教學相遇」論壇中的二位新竹教師與二位浙江教師為研究對象,觀看教學影帶且轉錄為文字資料,繪製其課堂中的論證結構圖,並分析四位教師對於學生形成數學論證時的教師支持性行為與其差異。
研究結果發現,兩岸教師在支持學生形成論證時,所使用的支持性行為似乎有一致性,皆是以教師問話為主,直接提供論證元素則是極為鮮少,即使有使用,也僅止於提供論證資料,顯示在強調論證的課室中,教師注重學生自發性的產出。且兩岸教師會因教學方法的差異,造成使用相同的支持性行為目的可能不同,偏重的支持性行為也會不同。而即使新竹教師皆採用臆測教學法,仍會因為臆測教學階段的目標不同,使教師作出的支持性行為產生差異。從兩岸教師與學生的對話討論中可知,藉由教師不同面向的支持方式,能夠協助學生發展論證,使其更為嚴謹與完整,即使教學主題與教學法相異,但在同是重視論證的政策下,教師與其行為是扮演形成論證與否的重要角色。
The development of mathematical argumentation in the classroom, with the footsteps of educational reform, has gradually gained attention in academic education, and China and Taiwan are no exception, both emphasis on the role of argumentation in learning in its education policy. The purpose of this study is to explore the characteristics of teacher support of China and Taiwan’s teachers when students form mathematical argumentations. This study adopts the case study method and chooses two Hsinchu teachers and two Zhejiang teachers who participate in the forum of "Cultivation of Qualification Orientation and Reasoning Classroom Teaching" as the research object. Watch the teaching tape and transcribe it into textual materials, draw the structure of argumentations in the classroom, and analyze the teacher-supporting behaviors of the four teachers in forming a mathematical argument for the students and the differences between them..
The results of the study found that the supportive behavior used by Zhejiang and Hsinchu teachers seem to be consistent, they were mainly based on Asking questions, and the Direct contributions to arguments was extremely rare. Even if it is used, it only ends with the direct contributing data, which shows that in the classrooms that emphasize argumentation, teachers focus on the spontaneous output of students. Moreover, due to differences in teaching methods, Zhejiang and Hsinchu teachers may use the same supportive behaviors for different purposes, and different supportive behaviors may be different. Even if Hsinchu teachers use the mathematically conjecture teaching method, the supportive behaviors made by teachers will be different because of the different goals in the teaching stage. From the dialogue between Zhejiang and Hsinchu teachers and students, we can help students develop argumentations and make them more rigorous and complete through different ways of support. Even if the teaching themes are different from the teaching methods, they also attach importance to argumentation. Under the policy, teachers and their behaviors play an important role in forming argumentations.
王文科、王智弘(2014)。教育研究法。台灣五南圖書出版股份有限公司。
尤昭奇(2009)。實施以臆測為中心的數學探究教學中七年級學生數學素養的展
現之行動研究。未出版碩士論文。國立彰化師範大學科學教育研究所。
左秀兰(1998)。小学数学探究教学概论。教育学报,(8),28-32.
李丹(1989)。兒童發展。台北:五南。
李松濤、林煥祥、洪振方(2010)。探究式教學對學童科學論證能力影響之
探究。科學教育學刊,18(3),177-203。
呂沅潤(2015)。在數學臆測教學之下國小四年級論證結構之比較。未出版碩士
論文,國立新竹教育大學數理教育研究所。
吳建華、謝發昱、黃俊峰、陳銘凱(2004)。個案研究。載於潘慧玲主編,教育
研究的取徑:概念與應用(頁199-236)。臺北市:高等教育文化事業有限公
司。
余姿縈(2018)。初任教師建議數學臆測規範之行動研究:以高年級為例。未出
版碩士論文,國立清華大學數理教育研究所。
周欣怡(2015)。在數學臆測教學之下國小三年級論證發展之研究。未出版碩士
論文,國立新竹教育大學數理教育研究所。
林福來(2008)。數學臆測活動的設計、教學與評量:總計畫(1/3)。行政院國
家科學委員會補助專題研究計畫期中報告(計畫編號NSC 96-2521-S-003-
001-MY3),未出版。
林碧珍(2014)。數學教師與其師資培育者的專業發展:統整理論建構與實務應
用子計畫一:國小在職教師設計數學臆測活動的專業成長研究。行政院科
技部補助專題研究計畫(計畫編號:NSC 100-2511-S-134-006-MY3),未
出版。
林碧珍(2015)。國小三年級課室以數學臆測活動引發學生論證初探。科學教育
學刊,23(1),83-110.
林碧珍(2016)。在”周長與面積變化關係”中是如何發展學生的數學論證的。
新世紀小學數學, 3,6-10。
林碧珍、周欣怡(2013)。國小學生臆測未知結果之論證結構:以四邊形沿一對角
線剪開為例。論文發表於第29屆科學教育國際研討會(pp.311-313)。12月12-
14日。國立彰化師大科學教育研究所。
林碧珍、馮博凱(2013)。國小學生反駁錯誤命題的論證結構-以速率單元為例。
論文發表於第 29 屆科學 教育國際研討會(pp.292-294)。12 月 12-14 日。
國立彰化師大科學教育研究所。
林碧珍、蔡文煥(2014)。數學教師與其師資培育者的專業發展:統整理論建構
與實務應用-子計劃一:國小在職教師設計數學臆測活動的專業成長研究
(3/3)。行政院科技部補助專題研究計畫(計畫編號:NSC 100-2511-S-
134-006-MY3),未出版。
林碧珍、鄭章華、陳姿靜(2016):數學素養導向的任務設計與教學實踐:以發
展學童的數學論證為例。教科書研究,9(1),109-134。
林樹聲(2006)。從爭議性科技議題的教學設計和實踐中詮釋科學教師的角色
―個案研究。科學教育學刊,14(3),237-255。
洪文東(2007)。探究式化學單元教學活動設計與評估: 以 [水溶液的性質] 為
例。美和技術學院報,26(1),15-42。
洪神佑(2016)。在數學臆測教學下一組國小六年級學生論證結構發展之研究。未
出版碩士論文,國立新竹教育大學數理教育研究所。
涂荣豹(2006)。数学学习与数学迁移。数学教育学报,4(1)。
徐学福、宋乃庆(2001)。20 世纪探究教学理论的发展及启示。西南师范大
学学报: 人文社会科学版,27(4),92-97。
張春興(1993)。現代心理學。台北:東華書局。
张崇善(2001)。探究式: 课堂教学改革之理想选择。教育理论与实践,
21(11),39-42。
張桂惠(2016)。一位國小五年級教師將數學臆測融入教學實踐之行動研究。未
出版碩士論文,國立新竹教育大學數理教育研究所。
教育部(2008)。國民中小學九年一貫課程綱要數學學習領域。臺北:作者。
教育部(2011). 义务教育数学课程标准。北京: 北京师范大学。
教育部(2012)。小学教师专业标准(试行)。北京:北京师范大学。
教育部(2014)。中国学生发展核心素养。北京:北京师范大学。
陳佳明(2018)。一位國小五年級教師建立從造例到提出猜想臆測教學規範之行
動研究。未出版碩士論文。國立清華大學數理教育研究所。
陳英娥、林福來(1998)。數學臆測的思維模式。科學教育學刊,6(2),191-218。
陳穎志、曾敬梅、張文華(2010)。探討教師角色在促進國小學童論證表現的改變
-以啟發式科學寫作 (SWH) 教學為情境的四年個案研究。科學教育學刊,
18(5), 417-442.
國家教育研究院(2016)十二年國民基本教育課程綱要國民中小學暨普通型高
級中等學校數學領域(草案)。
馮博凱(2014)。國小三年級學生論證之比較研究。未出版碩士論文,國立新竹
教育大學數理研究所。
藍敏菁(2016)。一位國小三年級教師設計臆測任務融入數學教學之行動研究。
未出版碩士論文,國立新竹教育大學數理教育研究所。
Advisory Committee on Mathematics Education. (2011). Mathematical needs: Mathematical needs of learners.London, UK: Advisory Committee on Mathematics Education.
Bruner, J. (1977). The process of education. 1960. Cambridge, MA: Harvard UP.
Balacheff, N. (1988). Aspects of proof in pupils’ practice of school mathematics. In D. Pimm(Ed.), Mathematics, teachers, and children (pp. 216-235). London: Hoddler and Stoughton.
Billig, M. (1996). Arguing and thinking: A rhetorical approach to social psychology.
Boero, P. (1999). Argumentation and mathematical proof: A complex, productive, unavoidable relationship in mathematics and mathematics education.International Newsletter on the Teaching and Learning of Mathematical Proof,7(8).
Bishop, A., & Goffree, F. (1986). Classroom organization and dynamics. In B. Christiansen, A. G. Howson, & M. Otte (Eds.), Perspectives on mathematics education (pp. 309–365). Dordrecht: Reidel.
Bybee, R. W., & Landes, N. M. (1988). The biological sciences curriculum study(BSCS). Science and Children, 25(8), 36-37.
Brendefur, J., & Frykholm, J. (2000). Promoting mathematical communication in the classroom: Two preservice teachers’ conceptions and practices. Journal of Mathematics Teacher Education, 3, 125–153.Cambridge: Cambridge University Press.
Ball, D. L., & Bass, H. (2003). Making mathematics reasonable in school. A research companion to principles and standards for school mathematics, 27-44.
Boaler, J., & Brodie, K. (2004). The importance, nature and impact of teacher questions. In D. E.McDougall & J.A. Ross (Eds.), Proceedings of the twenty-sixth annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 773–781). Toronto, Canada: Ontario Institute for Studies in Education/University of Toronto.
Brown, R., & Redmond, T. (2007). Collective argumentation and modelling mathematics practices outside the classroom. Mathematics: Essential research, essential practice, 1, 163-171.
Ben-Zvi, D., Bakker, A., & Makar, K. (2015). Learning to reason from samples. Educational Studies in Mathematics, 88(3), 291-303.
Canadas, M. C., Deulofeu, J., Figueiras, L., Reid, D., & Yevdokimov, O. (2007). The conjecturing process: Perspectives in theory and implications in practice. Journal of Teaching and Learning, 5(1), 55-72.
Carpenter, T. P., Franke, M. L., & Levi, L. (2003). Thinking mathematically: Integrating arithmetic and algebra in elementary school. Heinemann, 361 Hanover Street, Portsmouth, NH 03801-3912 (Paperback: $24.50). Web site: www. heinemann. com..
Christiansen, B., & Walther, G. (1986). Task and activity. In B. Christiansen, A. Howson, & M. Otte (Eds.), Perspectives on mathematics education (pp. 243–307). Dordrecht: Reidel.
Christiansen, B., & Walther, G. (1986). Task and activity. In B. Christiansen, A. Howson, & M. Otte (Eds.), Perspectives on mathematics education (pp. 243–307). Dordrecht: Reidel.
Common Core State Standards Initiative. (2010). Common Core State Standards for Mathematics. Washington, DC: National Governors Association Center for Best Practices and the Council of Chief State School Officers.
Conner, A., Singletary, L. M., Smith, R. C., Wagner, P. A., & Francisco, R. T. (2014a). Identifying Kinds of Reasoning in Collective Argumentation. Mathematical Thinking and Learning, 16(3), 181-200.
Conner, A., Singletary, L. M., Smith, R. C., Wagner, P. A., & Francisco, R. T. (2014b). Teacher support for collective argumentation: A framework for examining how teachers support students’ engagement in mathematical activities. Educational Studies in Mathematics, 86(3), 401-429.
Crawford, B. A. (2000). Embracing the essence of inquiry: New roles for science
da Ponte, J. P., & Quaresma, M. (2016). Teachers’ professional practice conducting mathematical discussions. Educational Studies in Mathematics, 93(1), 51-66.
Dewey, J. (1910). Science as subject-matter and as method. Science, 31(787), 121-127.
D'Amore, B. (2005). Secondary school students' mathematical argumentation and Indian Logic (Nyaya). For the learning of mathematics, 25(2), 26-32.
Denzin, N. K., & Lincoln, Y. S. (2005). Qualitative research. Denzin, NK y Lincoln YS, 2.Lichtman, M. (Ed.). (2010). Qualitative research in education: A user's guide. Sage.
Douek, N. (1999). Argumentative aspects of proving: Analysis of some undergraduate mathematicsstudents’ performance. In O. Zaslavsky (Ed.), Proceedings of the 23rd conference of the international group for the psychology of mathematics education (Vol. 2, pp. 273-280). Haifa, Israel: Haifa University.
Douek, N. (1999). Argumentative aspects of proving: Analysis of some undergraduate mathematics students’ performances.In O. Zaslavsky (Eds.), Proceedings of the 23nd conference of the international group for the psychology of mathematics education(Vol.2,pp. 273-288).Haifa,Israel: PME.
Doyle, W. (1988). Work in mathematics classes: The context of students’ thinking during instruction. Educational Psychologist, 23, 167-180.
Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science education, 84(3), 287-312.
Ellis, A. B. (2007). Connections between generalizing and justifying: Students’ reasoning with linear relationships. Journal for Research in Mathematics Education, 38(3), 194-229.
Forman, E. A., Larreamendy-Joerns, J., Stein, M. K., & Brown, C. A. (1998). “You’re going to want to find out which and prove it”: Collective argumentation in a mathematics classroom. Learning and Instruction, 8, 527–548.
Franke, M. L., Kazemi, E., & Battey, D. (2007). Understanding teaching and classroom practice in mathematics.In F. Lester (Ed.), Second handbook of mathematics teaching and learning (pp. 225–256). Greenwich: Information Age.
Franke, M. L., Webb, N., Chan, A., Ing, M., Freund, D., & Battey, D. (2009). Teacher questioning to elicit students’ mathematical thinking in elementary school classrooms. Journal of Teacher Education.doi:10.1177/0022487109339906
Gold, R. L. (1957). Roles in sociological field observations. Soc. F., 36, 217.
Gall, M. D. (1989). Gall. JP, & Borg, WR (2007). Educational research: An introduction, 8.
Glaser, B., & Strauss, A. (1967). The discovery ofgrounded theory. London: Weidenfeld and Nicholson, 24(25), 288-304.
Hanna, G. (2000). Proof, explanation and exploration: An overview. Education Studies in Mathematics, 44, 5-23.
Hanna, G.(1990). Some Pedagogical Aspects of Proof.Interchange,21(1), 6-13.
Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. Research in collegiate mathematics education III, 234-283.
Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the learning and teaching of proof. Second handbook of research on mathematics teaching and learning, 2, 805-842.
Hanna, G., & De Villiers, M. (Eds.). (2012). Proof and proving in mathematics education: The 19th ICMI study (Vol. 15). Springer Science & Business Media.
Hufferd-Ackles, K., Fuson, K., & Sherin, M. G. (2004). Describing levels and components of a math-talk learning community. Journal for Research in Mathematics Education, 35, 81–116.
Hufferd-Ackles, K., Fuson, K., & Sherin, M. G. (2015). Describing levels and components of a math-talk learning community. In E. A. Silver & P. A. Kenny (Eds.), More lessons learned from research: Volume 1: Useful and usable research related to core mathematical practices (pp. 125-134), Reston, VA: NCTM.
Inglis, M., Mejia-Ramos, J. P., & Simpson, A. (2007). Modelling mathematical argumentation: The importance of qualification. Educational Studies in Mathematics, 66(1), 3-21.
Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding It Up: Helping Children Learn Mathematics, National Academy Press, Washington, DC.
Knipping, C. (2008). A method for revealing structures of argumentations in classroom proving process.ZDM The International Journal on Mathematics Education, 40(3), 427-441. doi: 10.1007/s11858-008-0095-y.
Knipping, C., & Reid, D. (2013). Revealing structures of argumentations in classroom proving processes. In. A. Aberdein & I. J. Dove (Eds.), The argument of mathematics (pp. 119-146).New York: Springer Dordrecht.
Kosko, K., Rougee, A., & Herbst, P. (2014). What actions do teachers envision when asked to facilitate mathematical argumentation in the classroom? Mathematics Education Research Journal. doi:10.1007/s13394-013-0116-1
Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 229–269). Hillsdale, NJ: Erlbaum.
Krummheuer, G. (2000). Mathematics learning in narrative classroom cultures: Studies of argumentation in primary mathematics education. For the Learning of Mathematics, 20(1), 22–32.
Krummheuer, G. (2007). Argumentation and participation in the primary mathematics classroom:Two episodes and related theoretical abduction. Journal of Mathematical Behavior, 26(1), 60-82.
Kuhn D. (1991). The skills of argument. New York: Cambridge University Press.
Kuhn, D. (1993). Science as argument: Implication for teaching and learning scientific
Kuhn, D. (2005). The skills of argument.In D. Kuhn (Ed.), Education for thinking(pp. 132-148). London: Harvard University Press.
Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. New York:Cambridge University Press.
Lichtman, M. (Ed.). (2010). Qualitative research in education: A user's guide. Sage.
Lin, P. J.(2018)The Norms of Argumentation In A Primary Classroom.In Feng-Jui Hsieh (Ed.),Proceedings of the 8th ICMI-East Asia Regional Conference on Mathematics Education(EARCOME8)(vol. 2, pp.83-92).May 7-11. Taipei, Taiwan: EARCOME
Lin, P. J. (2016). Learning to teach students’ mathematical argumentation in classroom. Paper presented at the 8th International Conference of Classroom Teaching Research for All Students (CTRAS8).. July 21–23, Macromedia University Hamburg/Munich, Germany.
Lin, F.L., & Yu J.W.(2005).False proposition-As a means for making conjectures in mathematics classrooms.Paer presented at the Asian Mathematical C onference 2005, Singapore July 20-23
Lin, P. J. , Tsai, W. H. (2013). A task design for conjecturing in classroom contexts. Proceedings of the 22nd of International Congress of Mathematics Instruction (ICMI 22) Study, Theme: Task design in mathematics education (pp. 251-260). July 22-26. University of Oxford, UK.
Lin, P. J., & Tsai, W. H. (2016). Enhancing Students’ Mathematical Conjecturing and Justification in Third-Grade Classrooms: the sum of even/odd numbers. Journal of Mathematics Education, 9(1), 1-15.
Lobato, J., Clarke, D., & Ellis, A. B. (2005). Initiating and eliciting in teaching: A reformulation of telling.Journal for Research in Mathematics Education, 36, 101–136.
Lannin, J., Ellis, A. B., & Elliot, R. (2011). Developing essential understanding of mathematics reasoning for teaching mathematics in prekindergarten-grade 8. Reston: NCTM.
Lin, F. L., Yang, K. L., Lee, K. H., Tabach, M. Styliandies, G. (2012). Principles of task design for conjecturing and proving. In G. Hanna & M. de Villers (Eds.) Proof and proving in mathematics education (pp.305-326). The 19th ICMI study. Springer.
Merriam, S. B. (1988). Case study research in education: A qualitative approach. Jossey-Bass.
Martin, T. S. (Ed.). (2007). Mathematics teaching today: Improving practice, improving student learning. Reston, VA: National Council of Teachers of Mathematics.
Marttunen, M. (1994). Assessing argumentation skills among Finnish university students. Learningand Instruction, 4, 175–191.
McMillan, J. H., & Schumacher, S. (2010). Research in Education: Evidence-Based Inquiry, MyEducationLab Series. Pearson.
Mason, J., Burton, L., & Stacey, K. (1985). Thinking mathematically. Menlo Park, CA: Addison-Wesley.
Mata-Pereira, J., & da Ponte, J. P. (2017). Enhancing students’ mathematical reasoning in the classroom: teacher actions facilitating generalization and justification. Educational Studies in Mathematics, 96(2), 169-186.
National Research Council. (1996). National science education standards. National Academies Press.
National Council of Teachers of Mathematics (2000). The principles and standards for school mathematics. Reston, VA.: National Council of Teachers of Mathematics.
National Research Council. (2000). Inquiry and the national science education standards: A guide for teaching and learning. National Academies Press.
National Council of Teachers of Mathematics. (2009). Focus in high school mathematics: Reasoning and sense making. Reston, VA: Author.
National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010).Common core state standards: Mathematics standards. Washington, DC: National Governors AssociationCenter for Best Practices, Council of Chief State School Officers. Retrieved from http://www.corestandards.org/the-standards/mathematics.
NCTM. (1991). Professional standards for teaching mathematics. Reston: NCTM.
OECD.(2013). Pisa 2015 draft collaborative problem solving framework. Retrieved Apr 28, 2014, from http://www.oecd.org/pisa/pisaproducts/Draft%20PISA%202015%20Collaborative%20Problem%20Solving%20Framework%20.pdf
Osborne, J., Erduran, S., & Simon, S. (2004).Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994-1020.
Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educational Studies in Mathematics, 66, 23-41.
Polya, G. (1968). Mathematics and plausible reasoning (2nd ed.). Princeton, NJ: Princeton University Press.
Ponte, J. P., & Chapman, O. (2006). Mathematics teachers’ knowledge and practices. In A. Gutierrez & P. Boero(Eds.), Handbook of research on the psychology of mathematics education: Past, present and future (pp. 461–494). Roterdham: Sense.
Rosser, R. A. (1994). Cognitive development: Psychological and biological perspectives. Allyn & Bacon.
RUSSELL, J. S. (1999). Mathematical Reasoning in the Elementary Grades. Developing Mathematical Reasoning in Grades K-12. 1999Yearbook, NCTM, 1-12.
Reid, D. A., &Knipping, C. (2010). Argumentation Structures.In D. A. Reid & C. Knipping (Eds.), Proof in mathematics education: Research, learning and teaching (pp.179-192). Rotterdam: Sense Publishers.
Suchman, J. R.(1961). Developing inquiry. Chicago: Science Research Associates.
Smith, M. L. (1987). Publishing qualitative research. American educational research journal, 24(2), 173-183.
Sherin, M. (2002). A balancing act: Developing a discourse community in a mathematics classroom. Journal of Mathematics Teacher Education. doi:10.1023/A:1020134209073
Speer, W.R. (2003). Inquiry learning in mathematics. In Center Of Science and Mathematics education:Opportunities for Success. Retrieved December 7, 2004, from http://cosmos.gbsu.edu/oborconf2003/Speer_COSMOS.ppt
Shinno, Y.(2017) Reconstructing A Lesson Sequence Introducing An Irrational Number As A Global Argumentation Structure.
Simon, M. A., & Blume, G. W. (1996). Justification in the mathematics classroom: A study of prospective elementary teachers. Journal of mathematical behavior, 15(1), 3-31.
Staples, M. (2007). Supporting whole-class collaborative inquiry in a secondary mathematics classroom. Cognition and Instruction, 25(2-3), 161-217.
Stein, M. K., & Lane, S. (1996). Instructional tasks and the development of student capacity to think and reason: An analysis of the relationship between teaching and learning in a reform mathematics project. Educational Research and Evaluation, 2, 50-80.
Stein, M. K., Engle, R. A., Smith, M., & Hughes, E. K. (2008). Orchestrating productive mathematical discussions: Five practices for helping teachers move beyond show and tell. Mathematical Thinking and Learning, 10, 313–340.
Stein, M. K., Grover, B. W., & Henningsen, M. (1996). Building student capacity for mathematical thinking and reasoning: An analysis of mathematical tasks used in reform classrooms. American Educational Research Journal, 33, 455-488.
Stein, M. K., Remillard, J., & Smith, M. (2007). How curriculum influences student learning. In F. Lester (Ed.), Second handbook of mathematics teaching and learning (pp. 319–369). Greenwich: Information Age.
Strauss, A., & Corbin, J. (1994). Grounded theory methodology. Handbook of qualitative research, 17, 273-285.
Stylianides, A. J. (2007). Proof and proving in school mathematics. Journal for Research in Mathematics Education, 38(3), 289-321.
Stylianides, A. J. (2016). Proving in the elementary mathematics classroom. Oxford, UK: Oxford University Press.
Stylianides, A. J. , & Ball, D. L. (2008). Understanding and describing mathematical knowledge for teaching: knowledge about proof for engaging students in the activity of proving. Journal of Mathematics Teacher Education 11:307–332
Stylianides, G. J., & Stylianides, A. J. (2009). Facilitating the transition from empirical arguments to proof. Journal for Research in Mathematics Education, 40, 314-352.teachers.
Stylianides, A. J., Bieda, K. N., & Morselli, F. (2016). Proof and argumentation in mathematics education research. In The second handbook of research on the psychology of mathematics education (pp. 315-351). SensePublishers,Rotterdam.
Toulmin, S. E. (1958). The uses of argument. Cambridge: Cambridge University Press.
Wood, T. (1999). Creating a context for argument in mathematics class. Journal for Research in Mathematics Education, 30(2), 171–191.
Yackel, E. (2002). What we can learn from analyzing the teacher’s role in collective argumentation? Journal of Mathematical Behavior, 21, 423–440.