研究生: |
吳事勳 Wu, Shi-Xun |
---|---|
論文名稱: |
高能量密度材料設計之理論研究 A Theoretical Study of Molecular Design of High-Energy Density Materials |
指導教授: |
游靜惠
Yu, Chin-Hui |
口試委員: |
廖欣怡
尤貞祥 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 高能量密度材料 、高含氮化合物 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前已有許多利用含氮雜環芳香分子,以設計或合成出具高生成熱的高能量密度化合物,而有別於以往傳統的高能量密度化合物,例如TNT、RDX、HMX等這類較低生成熱的分子。而靠密度泛函理論來計算這類高含氮分子的生成熱和能量性質,可幫助了解分子是否具備高能量密度的性質。本論文即主要先設計出類似卟吩(porphine)和咕啉(corrin)結構的四聯三唑環,及帶硝基和疊氮基的衍生物。另外還有具六到十二個連續氮氮鍵結構的雙唑環分子,及其硝基全取代的衍生物。再藉由密度泛函計算這類分子的生成熱、爆熱、分子密度,並進而推估其爆速和爆壓,以尋求具有較高能量性質的分子。
計算結果發現,四聯三唑環都具有超過1000 kJ/mol的高生成熱,由其以疊氮基取代的分子,其生成熱最高,可達約2600 kJ/mol。爆炸性質的表現上,以硝基取代的分子較佳,最高爆速可達11.68 km/s,最大爆壓40.37GPa,超越HMX的爆炸性質。而雙唑環的生成熱隨連氮數目的增加而線性地從,爆熱亦相同地線性增加。爆速方面皆能達到HMX之水準。在硝基的添加下,生成熱、爆熱和密度皆有顯著提升,導致爆速和爆壓皆提升到RDX和HMX的水準之上。故本研究中,四聯三唑環和雙三唑環分子,皆具有高能量密度之性質。
The high-nitrogen compounds of high-energy density materials (HEDMs) are different from traditional HEDMs, such as trinitrotoluene, hexogen (RDX), and octogen (HMX), which have lower heat of formation (HOF). In this thesis, HOF and energetic properties of HEDMs are calculated by density functional theory (DFT). Cyclotetratriazoles, whose structures are similar to porphine or corrin, are promising candidates for HEDM. The properties of the designed cyclotetratriazoles are studied. The diazole ring system with six to twelve nitrogen chains are also designed as a second series of HEDMs. The relationship between numbers of nitrogen atoms as well as physical and chemical properties are investigated. Furthermore, the effect of –NO2 substitution are studied in these diazole rings. The HOF, heat of explosion (Q) and density (ρ) are obtained from DFT calculations, and the velocity (D) and pressure (P) of detonation are evaluated by Kamlet-Jacobs equation.
The HOFs of all cyclotetratriazoles are larger than 1000 kJ/mol. Especially, HOF of –N3 substituted compounds is about 2600 kJ/mol. For detonation properties, -NO2 substituted molecule is optimal (D=11.68 km/s, P=40.37 GPa), exceeding the performance of HMX. Furthermore, HOF and Q increase linearly with the number of nitrogen atoms. Notably, -NO2 groups enhance HOF, Q and ρ significantly. The values of D and P in these compounds are higher than those observed for RDX and HMX. The energetic properties indicate that these two series of high-nitrogen compounds are indeed HEDMs.
1. Steinhauser, G.; Klapotke, T. M., Angew. Chem. Int. Ed. 2008, 47, 3330.
2. Strout, D. L., J. Phys. Chem. A 2004, 108, 10911.
3. Xu, X. J.; Xiao, H. M.; Ju, X. H.; Gong, X. D.; Zhu, W. H., J. Phys. Chem. A 2006, 110, 5929.
4. Rice, B. M.; Byrd, E. F. C.; Mattson, W. D., Struct. Bonding (Berlin) 2007, 125, 85.
5. Kohler, J.; Meyer, R., Explosivstoffe. Wiley-VCH: 1991.
6. Klapotke, T. M.; Krumm, B.; Holl, G.; Kaiser, M., In 30th Int. Annual Conference of ICT, Germany, 1999; p 120/1.
7. Simpson, R. L.; Urtiew, P. A.; Ornellas, D. L.; Moody, G. L.; Scribner, K. J.; Hofman, D. M., Propellants, Explos., Pyrotech. 1997, 22, 249.
8. Karaghiosoff, K.; Klapotke, T. M.; Michailowski, A.; Holl, G., Acta Cryst. C 2002, C 58, 580.
9. Chavez, D. E.; Hiskey, M. A.; Gilardi, R. D., Angew. Chem. Int. Ed. 2000, 39, 1791.
10. Hammerl, A.; Klapotke, T. M.; Noth, H.; Warchhold, M.; Holl, G.; Kaiser, M., Inorg. Chem. 2001, 39, 1791.
11. Klapotke, T. M.; Mayer, P.; Schulz, A.; Weigand, J., Propellants, Explos. Pyrotech. 2004, 29, 325.
12. Cowley, R. E.; Elhaik, J. N.; Eckert, A.; Brennessel, W. W.; Bill, E.; Holland, P. L., J. Am. Chem. Soc 2008, 130, 6074.
13. Glover, E. E.; Rowbottom, K. T., J. Chem. Soc., Perkin Trans. 1 1974, 1792.
14. Huynh, M. H. V.; Hiskey, M. A.; Chavez, D. E.; Naud, D. L.; Gilardi, R. D., J. Am. Chem. Soc. 2005, 127, 12537.
15. Abe, T.; Tao, G. H.; Joo, Y. H.; Huang, Y. G.; Twamley, B.; Shreeve, J. M., Angew. Chem. 2008, 2008, 7195.
16. Huynh, M. H. V.; Hiskey, M. A.; Hartline, E. L.; Montoya, D. P.; Gilardi, R. D., Angew. Chem., Int. Ed. 2004, 43, 4924.
17. Neutz, J.; Grosshardt, O.; Schaufele, S.; Schuppler, H.; Schweikert, W., Propellants, Explos., Pyrotech. 2003, 28, 181.
18. Chavez, D. E.; Hiskey, M. A.; Gilardi, R. D., Angew. Chem., Int. Ed. 2000, 39, 1791.
19. Kerth, J.; Lobbecke, S., Propellants, Explos., Pyrotech. 2002, 27, 111.
20. Churakov, A. M.; Smirnov, O. Y.; Ioffe, S. L.; Strelenko, Y. A.; Tartakovsky, V. A., Eur. J. Org. Chem. 2002, 14, 2342.
21. Jadhav, H. S.; Dhavale, D. D.; Krishnamurthy, V. N., Theory Pract. Energ. Mater. 2001, 4, 493.
22. Huynh, M. H. V.; Hiskey, M. A.; Archuleta, J. G.; Roemer, E. L.; Gilardi, R. D., Angew. Chem., Int. Ed. 2004, 43, 5658.
23. Steinhauser, G.; Klapotke, T. M., Angew. Chem., Int. Ed., 2008, 47, 2.
24. Akhavan, J., Effect of density on the velocity of detonation. In THE CHEMISTRY OF EXPLOSIVES, The royal society of chemistry: 1998; pp 51
25. Agrawal, J. P., oxygen balance (OB). In High Energy Materials, WILEY-VCH Verlag GmbH & Co. KGaA: 2010; pp 17
26. Akhavan, J., Oxygen Balance. In THE CHEMISTRY OF EXPLOSIVES, The royal society of chemistry: 1998; pp 69
27. Kistiakowsky, W., ZEITSCHRIFT FUR ELEKTROCHEMIE UND ANGEWANDTE PHYSIKALISCHE CHEMIE 1906, 12, 513.
28. Agrawal, J. P., heat of formation. In High Energy Materials, WILEY-VCH Verlag GmbH & Co. KGaA: 2010; pp 24
29. Agrawal, J. P., Heat of Explosion and Gases Products. In High Energy Materials, WILEY-VCH Verlag GmbH & Co. KGaA: 2010; pp 27
30. Agrawal, J. P., Velocity of Detonation (VOD). In High Energy Materials, WILEY-VCH Verlag GmbH & Co. KGaA: 2010; pp 30
31. Agrawal, J. P., Detonation Pressure (DP). In High Energy Materials, WILEY-VCH Verlag GmbH & Co. KGaA: 2010; pp 31
32. Lee, C. T.; Yang, W. T.; Parr, R. G., Phys. Rev. B 1988, 37, 785.
33. Kamlet, M. J.; Jacobs, S. J., J. Chem. Phys. 1968, 48, 23.
34. Huynh, M. H. V.; Hiskey, M. A.; Hartline, E. L.; Montoya, D. P.; Gilardi, R., Angew. Chem., Int. Ed. 2004, 43, (37), 4924.
35. Li, Y. C.; Qi, C.; Li, S. H.; Zhang, H. J.; Sun, C. H.; Yu, Y. Z.; Pang, S. P., J. Am. Chem. Soc. 2010, 132, (35), 12172.
36. Hohenberg, P.; Kohn, W., Phys. Rev. 1964, 136.
37. Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A. Gaussian Inc., Pittsburgh, PA: 2003.
38. Chen, P. C.; Chieh, Y. C.; Tzeng, S. C., J. Mol. Struct. (Theochem.) 2003, 634, 215.
39. Qi, C.; Li, S.-H.; Li, Y.-C.; Wang, Y.; Chen, X.-K.; Pang, S.-P., J. Mater. Chem. 2011, 21, (9), 3221.
40. Becke, A. D., J. Chem. Phys. 1993, 98, 5648.
41. Perdew, J. P., Phys. Rev. B. 1986, 33, 8822.
42. Li, X. H.; Tang, Z. X.; Zhang, X. Z.; Yang, X. D., J. Hazard. Mater 2009, 165, 372.
43. Afeefy, H. Y.; Liebman, J. F.; Stein, S. E., In “Neutral Thermochemical Data” NIST Chemistry WebBook, 2006.
44. Kauer, J. C.; Carboni, R. A., J. Am. Chem. Soc. 1967, 89, 2633.
45. Oyumi, Y.; Rheingold, A. L.; Brill, T. B., J. Phys. Chem. 1986, 90, 4686.