簡易檢索 / 詳目顯示

研究生: 楊凌
Yang, Ling
論文名稱: 利用多功能報導系統達成胞外泌體之分子影像
A Multifunctional Reporter System for Visualization of Nanosized Extracellular Vesicles
指導教授: 賴品光
Lai, Pin-Kuang
萬德輝
Wan, De-Hui
口試委員: 張建文
Chang, Chien-Wen
陳韻晶
Chen, Yun-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 45
中文關鍵詞: 胞外泌體螢光蛋白生物冷光基因工程
外文關鍵詞: extracellular vesicle, fluorescent protein, bioluminescence, genetic engineering
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 胞外泌體是由細胞所分泌的奈米級脂雙層囊泡,除了可作為一種細胞之間聯繫的媒介之外,還可以伴隨著胞吞(endocytosis)的機制來裝載及運送有機分子。因此,了解並觀察胞外泌體的動態分佈可以幫助科學家釐清生命現象的機制,例如癌症轉移、血管新生等等。
    近十年以來,科學家發現生物冷光在非侵入式分子影像領域中擁有低背景雜訊和高靈敏度的優點。其中,一種新的冷光系統 NanoLuc (Nluc),相較於往常傳統冷光(e.g., Renilla luciferase (Rluc), Firefly luciferase (Fluc))有更卓越的表現,其具有半衰期大於兩小時的發光時間以及發光強度約為Rluc、Fluc強度的150倍。除此之外,生物冷光共振能量轉移在分生研究領域也佔有一席之地,其優點是使用自身發出的冷光當作光源,與螢光共振能量轉移是使用外來激發光當作光源相比,光漂白及自發螢光這些缺點也獲得改善,因此適合用於生醫影像。
    本篇論文使用多功能報導蛋白,LSSmOrange Nluc (OgNluc) 及palmitoylated LSSmOrange Nluc (PalmOgNluc),來標靶胞外泌體以得到影像實體化及追蹤胞外泌體用途。在細胞實驗上,證實棕櫚酰化並不會對螢光蛋白造成影響。此外,在4小時時間的Nluc活性檢測試驗中,相較於OgNluc,PalmOgNluc在細胞上有較穩定的訊號表現;在胞外泌體上,冷光活性表現強度較強。在未來動物實驗,希望在帶有PalmOgNluc的胞外泌體在深層細胞內可以達到良好的影像效果,達到時間與空間上的精確性。


    For multicellular organisms, the connection between the cells is important in maintaining the physiological homeostasis of life. Recently, scientists have found that cells can exchange information by extracellular vesicles (EVs). EVs are nanoscale vesicles secreted by the cells. In addition to being as a medium of intercellular communication, EVs can also load and transport molecules via endocytosis, fusion and receptor-uptake, etc. Therefore, understanding and observing the dynamic distribution of EVs may help scientists understand and clarify the mechanisms of EV-mediated biological phenomena, such as cancer progression and metastasis.
    Over the past decade, scientists have found that bioluminescence, in the field of non-invasive molecular imaging, has the advantages of providing a low background noise ratio and high signal intensity. Hence, bioluminescence imaging technology has increasingly been used in preclinical biomedical researches. Recently, a new bioluminescence system, NanoLuc (Nluc), has been developed. Nluc is superior to conventional luciferases, such as Rluc and Fluc. Nluc’s signal is 150-fold higher than that of Rluc and Fluc. Besides, bioluminescence resonance energy transfer (BRET) has a place in biomedical research. Comparing to fluorescence resonance energy transfer, without the need of excitation source, photobleaching and autofluorescence can be mitigated in BRET, which is suitable for biomedical imaging.
    In this thesis, we engineered optical reporters, LSSmOrange Nluc (OgNluc) and palmitoylated LSSmOrange Nluc (PalmOgNluc), labeling EV populations for visualization and tracking EVs release. In vitro assay, we confirm that palmitoylation does not influence the function of fusion protein. In addition, in the 4-hour detection for Nluc activity, we found that compared with OgNluc, PalmOgNluc has better stability in cells and better signal in EVs. In future, we hope that EV-PalmOgNluc has a better resolution in the deep tissue for in vivo with accurate spatiotemporal resolution.

    摘要 i Abstract ii 致謝 iv 縮寫表 vi 目錄 vii 一. 文獻回顧與探討 1 (一) 胞外泌體 (Extracellular Vesicles; EVs) 1 (二) 生物冷光 (Bioluminescence, BL) 3 (三) 生物冷光共振能量轉移 (Bioluminescence Resonance Energy Transfer, BRET) 5 (四) S-棕櫚酰化 (S-Palmitoylation) 7 (五) 研究動機 9 二. 實驗材料與操作方法 10 2.1 材料 10 2.2 儀器 13 2.3 操作方法 14 2.3.1 報導系統之建立 (Construction of EV-BRET System) 14 2.3.2 膠體電泳分析 (Gel Electrophoresis Analysis) 15 2.3.3 細胞培養 (Cell Culture) 16 2.3.4 細胞轉染 (Transient Transfection) 16 2.3.5 慢病毒載體之建立 (Construction of Lentiviral Particles) 17 2.3.6 報導基因轉導至細胞內 (Transduction of the Reporter Gene into HEK 293T Cells) 17 2.3.7 活細胞共軛焦顯微鏡觀測 (Live-cell Confocal Microscopy) 17 2.3.8 奈米粒子追蹤分析 (Nanoparticle Tracking Analysis, NTA) 18 2.3.9 胞外泌體生產及分離 (EV Production and Isolation) 18 2.3.10 點墨法 (Dot Blot Analysis) 19 2.3.11 蔗糖密度梯度離心 (Sucrose Density Gradient) 20 2.3.12 西方墨點法 (Western Blot) 20 2.3.13 Nano-Glo 螢光素酶試驗 (Nano-Glo Luciferase Assay) 21 2.3.14 細胞中生物冷光影像 (BLI Image in vitro) 21 三. 實驗結果 22 3.1 膠體電泳分析 22 3.2 報導蛋白在細胞中的表現 24 3.3 細胞之生物冷光表現 25 3.4 細胞溶解產物之西方墨點法分析 27 3.5 奈米粒子追蹤分析 29 3.6 點墨法 31 3.7 PalmOgNluc標靶不同族群之胞外泌體 33 3.8 蔗糖梯度離心 35 3.9 四小時冷光活性及穩定性檢測 37 四. 討論 39 五. 結論 41 六. 參考文獻: 42

    1 Lampe, P. D. & Lau, A. F. The effects of connexin phosphorylation on gap junctional communication. The international journal of biochemistry & cell biology 36, 1171-1186, doi:10.1016/s1357-2725(03)00264-4 (2004).
    2 Yanez-Mo, M. et al. Biological properties of extracellular vesicles and their physiological functions. Journal of extracellular vesicles 4, 27066, doi:10.3402/jev.v4.27066 (2015).
    3 Zaborowski, M. P., Balaj, L., Breakefield, X. O. & Lai, C. P. Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study. Bioscience 65, 783-797, doi:10.1093/biosci/biv084 (2015).
    4 Kalra, H., Drummen, G. P. C. & Mathivanan, S. Focus on Extracellular Vesicles: Introducing the Next Small Big Thing. International Journal of Molecular Sciences 17, doi:10.3390/ijms17020170 (2016).
    5 Raposo, G. et al. B lymphocytes secrete antigen-presenting vesicles. The Journal of experimental medicine 183, 1161-1172 (1996).
    6 Ratajczak, J. et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20, 847-856, doi:10.1038/sj.leu.2404132 (2006).
    7 Chaput, N. & Thery, C. Exosomes: immune properties and potential clinical implementations. Seminars in immunopathology 33, 419-440, doi:10.1007/s00281-010-0233-9 (2011).
    8 Ratajczak, J., Wysoczynski, M., Hayek, F., Janowska-Wieczorek, A. & Ratajczak, M. Z. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20, 1487-1495, doi:10.1038/sj.leu.2404296 (2006).
    9 Hristov, M., Erl, W., Linder, S. & Weber, P. C. Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood 104, 2761-2766, doi:10.1182/blood-2003-10-3614 (2004).
    10 van der Pol, E., Boing, A. N., Harrison, P., Sturk, A. & Nieuwland, R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacological reviews 64, 676-705, doi:10.1124/pr.112.005983 (2012).
    11 Lai, C. P. & Breakefield, X. O. Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Frontiers in physiology 3, 228, doi:10.3389/fphys.2012.00228 (2012).
    12 Shin, H. et al. High-yield isolation of extracellular vesicles using aqueous two-phase system. Scientific reports 5, 13103, doi:10.1038/srep13103 (2015).
    13 Tauro, B. J. et al. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56, 293-304, doi:http://dx.doi.org/10.1016/j.ymeth.2012.01.002 (2012).
    14 Thery, C., Amigorena, S., Raposo, G. & Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current protocols in cell biology Chapter 3, Unit 3.22, doi:10.1002/0471143030.cb0322s30 (2006).
    15 Widder, E. A. & Falls, B. Review of Bioluminescence for Engineers and Scientists in Biophotonics. IEEE Journal of Selected Topics in Quantum Electronics 20, 232-241, doi:10.1109/JSTQE.2013.2284434 (2014).
    16 England, C. G., Ehlerding, E. B. & Cai, W. NanoLuc: A Small Luciferase Is Brightening Up the Field of Bioluminescence. Bioconjugate chemistry 27, 1175-1187, doi:10.1021/acs.bioconjchem.6b00112 (2016).
    17 Contag, C. H. et al. Visualizing gene expression in living mammals using a bioluminescent reporter. Photochemistry and photobiology 66, 523-531 (1997).
    18 Sadikot, R. T. & Blackwell, T. S. Bioluminescence Imaging. Proceedings of the American Thoracic Society 2, 537-540, doi:10.1513/pats.200507-067DS (2005).
    19 Roda, A. in Chemiluminescence and Bioluminescence: Past, Present and Future 1-50 (The Royal Society of Chemistry, 2011).
    20 Matthews, J. C., Hori, K. & Cormier, M. J. Purification and properties of Renilla reniformis luciferase. Biochemistry 16, 85-91 (1977).
    21 Chung, E. et al. Secreted Gaussia Luciferase as a Biomarker for Monitoring Tumor Progression and Treatment Response of Systemic Metastases. PLOS ONE 4, e8316, doi:10.1371/journal.pone.0008316 (2009).
    22 Degeling, M. H. et al. Directed molecular evolution reveals Gaussia luciferase variants with enhanced light output stability. Analytical chemistry 85, 3006-3012, doi:10.1021/ac4003134 (2013).
    23 Hall, M. P. et al. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS chemical biology 7, 1848-1857, doi:10.1021/cb3002478 (2012).
    24 Zhao, J., Nelson, T. J., Vu, Q., Truong, T. & Stains, C. I. Self-Assembling NanoLuc Luciferase Fragments as Probes for Protein Aggregation in Living Cells. ACS chemical biology 11, 132-138, doi:10.1021/acschembio.5b00758 (2016).
    25 Yasuzaki, Y., Yamada, Y., Ishikawa, T. & Harashima, H. Validation of Mitochondrial Gene Delivery in Liver and Skeletal Muscle via Hydrodynamic Injection Using an Artificial Mitochondrial Reporter DNA Vector. Molecular pharmaceutics 12, 4311-4320, doi:10.1021/acs.molpharmaceut.5b00511 (2015).
    26 Wu, P. G. & Brand, L. Resonance Energy Transfer: Methods and Applications. Analytical Biochemistry 218, 1-13, doi:http://dx.doi.org/10.1006/abio.1994.1134 (1994).
    27 Ghauharali & Brakenhoff. Fluorescence photobleaching-based image standardization for fluorescence microscopy. Journal of Microscopy 198, 88-100, doi:10.1046/j.1365-2818.2000.00683.x (2000).
    28 Monici, M. Cell and tissue autofluorescence research and diagnostic applications. Biotechnology annual review 11, 227-256, doi:10.1016/s1387-2656(05)11007-2 (2005).
    29 Clegg, R. M. [18] Fluorescence resonance energy transfer and nucleic acids. Methods in Enzymology 211, 353-388, doi:http://dx.doi.org/10.1016/0076-6879(92)11020-J (1992).
    30 Lohse, M. J., Nuber, S. & Hoffmann, C. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacological reviews 64, 299-336, doi:10.1124/pr.110.004309 (2012).
    31 Xie, Q., Soutto, M., Xu, X., Zhang, Y. & Johnson, C. H. Bioluminescence Resonance Energy Transfer (BRET) Imaging in Plant Seedlings and Mammalian Cells. Methods in molecular biology (Clifton, N.J.) 680, 3-28, doi:10.1007/978-1-60761-901-7_1 (2011).
    32 Xu, X. et al. Imaging protein interactions with bioluminescence resonance energy transfer (BRET) in plant and mammalian cells and tissues. Proceedings of the National Academy of Sciences of the United States of America 104, 10264-10269, doi:10.1073/pnas.0701987104 (2007).
    33 Xu, Y., Piston, D. W. & Johnson, C. H. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proceedings of the National Academy of Sciences of the United States of America 96, 151-156 (1999).
    34 Schaub, F. X. et al. Fluorophore-NanoLuc BRET Reporters Enable Sensitive In Vivo Optical Imaging and Flow Cytometry for Monitoring Tumorigenesis. Cancer research 75, 5023-5033, doi:10.1158/0008-5472.can-14-3538 (2015).
    35 Towler, D. A., Gordon, J. I., Adams, S. P. & Glaser, L. The biology and enzymology of eukaryotic protein acylation. Annual review of biochemistry 57, 69-99, doi:10.1146/annurev.bi.57.070188.000441 (1988).
    36 Aicart-Ramos, C., Valero, R. A. & Rodriguez-Crespo, I. Protein palmitoylation and subcellular trafficking. Biochimica et biophysica acta 1808, 2981-2994, doi:10.1016/j.bbamem.2011.07.009 (2011).
    37 Greaves, J. & Chamberlain, L. H. Palmitoylation-dependent protein sorting. The Journal of Cell Biology 176, 249-254, doi:10.1083/jcb.200610151 (2007).
    38 Fu, C., Wehr, D. R., Edwards, J. & Hauge, B. Rapid one-step recombinational cloning. Nucleic Acids Research 36, e54, doi:10.1093/nar/gkn167 (2008).
    39 Dragovic, R. A. et al. Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine : nanotechnology, biology, and medicine 7, 780-788, doi:10.1016/j.nano.2011.04.003 (2011).
    40 Lai, C. P. et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nature communications 6, 7029, doi:10.1038/ncomms8029 (2015).
    41 O'Neill, K., Lyons, S. K., Gallagher, W. M., Curran, K. M. & Byrne, A. T. Bioluminescent imaging: a critical tool in pre-clinical oncology research. The Journal of pathology 220, 317-327, doi:10.1002/path.2656 (2010).
    42 Stacer, A. C. et al. NanoLuc reporter for dual luciferase imaging in living animals. Molecular imaging 12, 1-13 (2013).

    QR CODE