簡易檢索 / 詳目顯示

研究生: 袁長安
Chang-Ann Yuan
論文名稱: 利用叢集原子-連體理論研究奈米結構力學行為
Investigation of nano-scaled structural mechanics using the clustered atomistic-continuum method
指導教授: 江國寧
Kou-Ning Chiang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 179
中文關鍵詞: 奈米結構力學叢集原子-連體理論有限單元法單分子力學分析雙股去氧核醣核酸力學分析
外文關鍵詞: nano-scaled structural mechanics, clustered atomistic-continuum mechanics, finite element theory, single molecule mechanical analysis, dsDNA mechanical analysis
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以有限單元法為基礎,建立一叢集原子-連體理論,用以計算奈米尺寸結構之力學行為。於該理論中,吾人首先將特定之原子團利用叢集單元代表之,而原子團間之化學鍵能即可利用原子-連體理論表現之。經由叢集原子-連體理論,即可將奈米尺度結構之物理特性以數值模型表現。並且,吾人可利用暫態有限單元方法分析奈米結構之力學行為,亦可更詳細地獲得於外負載下奈米結構中之化學鍵能的變化。若與一般之分子動力學計算比較,本研究中所提出的叢集原子-連體理論計算可以同時模擬數百萬個原子的行為。另外,因為本研究所提出之理論可將計算累進時間間隔擴充至百萬分一秒,但分子動力學之時間間隔則為百億分之一秒,故本研究之計算理論較分子動力學理論有更長的模擬時間。同時,由於本研之理論乃以有限單元法為計算基礎,故可以在計算的同時考慮多種化學鍵能之共同作用。
    另外,本研究利用前述之叢集原子-連體計算理論研究雙股螺旋之去氧核醣核酸(double strand deoxyribonucleic acid, dsDNA)之力學行為,並建立dsDNA之數值模型。利用本研究之計算理論進行dsDNA之數值模擬,吾人可以得到dsDNA分子於受外負載作用下之暫態力學行為。此外,為驗證dsDNA數值模型之真確性,吾人將該數值模型於受特定外負載下之分析結果,與受類似外負載下單分子操作之實驗數據比對。而該比對結果顯示,數值模型除數值方面與實驗數據相當符合外,並可賦予實驗結果合理之物理現象解釋。同時,利用前述之數值模型,吾人可更進一步地研究dsDNA分子,在受外負載下之堆垛作用勢與氫鍵能量之變化,以及相關結構變化之力學行為。
    然於奈米等級結構分析中,吾人需要同時考慮微觀力學與巨觀力學之綜合作用。因此,奈米尺寸之模擬需要考量尺寸效應、古典力學與量子力學之兩像性與實驗導向模擬等物理概念。而本研究之叢集原子-連體理論,實源於有限單元法之局域廣域(Micro-macro)模擬技術,並且適當地於邊界上考慮原子級能量關係。實言之,本研究之叢集原子-連體理論包含叢集原子理論以及原子-連體理論二部分。叢集原子理論主要將特定之叢集原子團,利用有限單元法中之適當單元予以描述。而原子-連體理論則處理叢集原子團間之原子級能量關係,並將該能量關係轉換為前述叢集單元間之作用力(矩)與位移(轉角)關係。因此,本研究將利用叢集原子-連體理論建立自由旋動邊界條件下之dsDNA分子數值模型,並且於外負載下之該數值模型則可經由暫態有限單元法軟體求解。吾人將前述之數值模擬與實驗量測模擬結果比對,可獲得相當的一致性,並且可以賦予dsDNA分子於拉申負載下結構變形之力學解釋。
    另外一方面,吾人將驗證以本研究提出之叢集原子-連體理論所見建立之dsDNA 數值模型的預測能力,故將該數值模型施予不同之外負載條件與邊界條件,並與單分子實驗結果比對。首先,吾人將研究雙股兩端固定之dsDNA於外負載下之力學行為,並將其分析結果與實驗比對。此外,吾人亦研究具實際生物序列雙股dsDNA打開(unzipping the dsDNA)之力學行為,並與實際之生物物理現象比較(如複製或轉錄起使序列),以期獲得該生物現象之力學解釋。


    A novel clustered atomistic-continuum mechanics (CACM) method, based on the finite element theory, has been proposed to simulate the mechanical characteristics of the nano-scaled structures. To accomplish the nano-scaled mechanical numerical simulation via CACM, the specific atomic groups are modeled as the clustered elements and the chemical bonding energies between the said clustered groups are described. Hence, the mechanical characteristics of the nano-scaled structure could be represented by the numerical model of CACM. The transient mechanical response of the nano-scaled molecules and the interested chemical bonds could be analyzed by the proposed method. Comparing the proposed method with the conventional molecule dynamic (MD) method, the CACM could efficiently extend total atom numbers from thousands atoms to million atoms, the total simulated time from nano seconds to seconds and the time step from femto second to micron second. Moreover, the CACM could simulate the structure with several different kinds of the chemical binding energies.
    The dsDNA molecule is treated as the test vehicle of the proposed CACM method. Through dsDNA CACM model, the mechanics of dsDNA could be represented visually. Moreover, the numerical simulations exhibit good agreements with the experimental results which are obtained by the single molecule manipulation technique. Additionally, the response of the chemical bonds in dsDNA while applying the external loading would be then elucidated, including the stacking energy bonds and hydrogen bonds. Moreover, the mechanical characteristic of the dsDNA with different sequence would be then understood.
    Since the analyzed domain of the dsDNA related problem is the nano-scale, both the micro-scaled mechanics (quantum mechanics) and the macro-scaled mechanics (continuum mechanics) should be considered. Therefore, the nano-scaled modeling should consider the size effect, the complementary of the classical and quantum mechanics and the experimental oriented modeling method. In order to implement the said modeling theory, the proposed CACM is based on the continuum mechanics, and it is deduced form the micro-macro numerical analysis technique of the finite element method. Moreover, the CACM comprises both the clustered atomistic and atomistic-continuum methods. The clustered atomistic method treats the covalent bond atom groups as clustered elements with effective characteristic properties. The atomistic-continuum method transfers from the stacking energy and hydrogen bond energy into the different types of virtual elements. Therefore, the freely-untwisting dsDNA model could be numerically represented by the CACM, and the simulation result could be obtained by the transient finite element solver. Good agreement was achieved between the numerical simulation and single molecular experimental results, with the mechanical behavior of stretching dsDNA being revealed.
    Furthermore, the predictive capability of the dsDNA model based on the CACM would be then investigated. The numerical models of the stretching both-strand-fixed dsDNA and that of the unzipping the dsDNA were established, respectively. Good agreements between these two models and experimental results were achieved. Moreover, the simulation results of the both-strand-fixed dsDNA under tensile loading clarified the mechanical behavior of dsDNA stretching. Additionally, the sequence-dependent mechanical response of the unzipping dsDNA would be reveal by the simulation results of the dsDNA CACM, and the molecular biological phenomenon, such as the replication and transcription, could be then understood.

    TABLE OF CONTENTS ACKNOWLEDGEMENT i ABSTRACT(CHINESE) ii ABSTRACT v LIST OF TABLES xi LIST OF FIGURES xii CHAPTER I. INTRODUCTION 1 1.1 MOTIVATION 1 1.2 LITERATURE SURVEY 3 1.2.1 Review of the single molecular DNA and its experiment 3 1.2.2 Review of the dsDNA theoretical mechanical approach 7 1.2.3 Background of micro-macro analysis technique 9 1.3 RESEARCH GOALS 12 CHAPTER II. THEORY 14 2.1 THE MICRO-MACRO THEORIES 14 2.1.1 Physical concept 15 2.1.2 Description by the mathematical model 17 2.2 ATOMIC BONDING ENERGY 26 2.2.1 Covalent bond energy 27 2.2.2 Hydrogen bond energy 30 2.2.3 Stacking energy in dsDNA (van der Waals bond) 31 2.3 TIME INTEGRATION SCHEME OF THE TRANSIENT FINITE ELEMENT METHOD 34 2.3.1 Explicit method 34 2.3.2 Implicit method 36 2.4 ANALYTICAL MODEL OF DSDNA 38 2.4.1 The linking number of dsDNA 38 2.4.2 Analytical model of dsDNA 39 2.5 NUMERICAL SIMULATION STRATEGY OF SINGLE MOLECULE 41 2.5.1 Ab initio method 41 2.5.2 Molecular dynamics method 42 2.5.3 Dissipative particle dynamics method 44 2.5.4 Clustered atomistic-continuum method 46 CHAPTER III. THE CACM MODELING OF DSDNA 48 3.1 GEOMETRICAL CHARACTERISTICS OF B-FORM DSDNA 48 3.1.1 dsDNA geometry in nature 48 3.1.2 Modeling simplification 50 3.2 CONCEPT OF CACM 52 3.2.1 Principle of nano-scaled structure modeling 53 3.2.2 Concept of the clustered atomistic method (CAM) 59 3.2.3 Concept of the atomistic-continuum method (ACM) 61 3.2.4 Implementation of the CACM 62 3.3 DSDNA NUMERICAL MODEL VIA CACM 62 3.3.1 The clustered elements 62 3.3.2 The virtual elements 64 CHAPTER IV. NUMERICAL RESULT OF DSDNA CACM MODEL 71 4.1 CHARACTERISTIC PROPERTIES OF THE CLUSTERED ELEMENTS 71 4.1.1 The elastic modulus of backbone: the WLC theory approach 71 4.1.2 The elastic modulus of backbone: the ssDNA model approach 73 4.2 VALIDATION OF THE DSDNA CACM MODEL VIA EXPERIMENTS 75 4.2.1 The finite element model of dsDNA based on CACM 75 4.2.2 The boundary conditions and the loading conditions of the freely-untwisting state 77 4.2.3 Simulation result and experimental validation 78 4.2.4 The mechanical characteristic of the freely-untwisting dsDNA 78 4.3 PREDICTIVE CAPABILITY OF THE DSDNA CACM MODEL 82 4.3.1 The both-strands-fixed dsDNA 82 4.3.2 The Unzipping dsDNA 84 CHAPTER V. CONCLUSION 103 REFERENCE 107 APPENDIX 120 A.1 ENGINEERING APPLICATIONS OF MACRO-MICRO TECHNIQUES 120 A.1.1 Equivalent beam of the solder joints of WLCSP 120 A.1.2 Equivalent spring of the probe card tip 129 A.2 THEOREMS IN FUNCTIONAL THEORY 137 FIGURES 120

    [1] J. Watson, T. Baker, S. Bell, A. Gann, M. Levine and R. Loick, Molecular Biology of the Gene, 5th ed., Benjamin/Cummings, San Francisco, USA, 2004.
    [2] B. Lewin, Genes, 7th ed., Oxford University Press, New York, USA, 2000.
    [3] W. Wood, J. Wilson, R. Benbow and L. Hood, Biochemistry: a problems approach, 2nd ed., Benjamin/Cummings, 1981, pp. 315.
    [4] J. Watson and F. Crick, “A structure for deoxyribose nucleic acid”, Nature, vol. 171, pp. 737-739, 1953.
    [5] C. Bustamante, Z. Bryant and S. B. Smith, “Ten years of tension: single-molucule DNA mechanics,” Nature, 421, 423-427, 2003.
    [6] A. Ashkin, “Acceleration and trapping of particles by radiation pressure, ” Phys. Rev. Lett., vol. 24, pp. 156, 1970.
    [7] K. Visscher, S. P. Gross and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing, ” IEEE J. Quantum Electronics, vol. 2, no. 4, pp. 1066-pp.1079, 1996.
    [8] K. C. Neman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps”, Biophys. J., vol. 77, pp. 2856-pp. 2863, 1999.
    [9] G. J. L. Wuite, R. J. Davenport, A. Rappaport, C. Bustamante, “An integrated laser trap/flow control video microscope for the study of single biomolecules”, Biophys. J., vol. 79, pp. 1155-pp.1167, 2000.
    [10] S. B. Smith, L. Finzi, and C. Bustamate, “Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads”, Science, vol. 258, p. 1122-pp.1126, 1992.
    [11] B. Brown, and R. R. Browan, Optical tweezers: theory and current applications, American Laboratory, 2001. [Online].
    Available at: http://www.iscpubs.com/articles/al/a0111bro.pdf (Nov. 6, 2004)
    [12] A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. USA, vol. 94, pp. 4853-pp.4860, 1997.
    [13] A. Ashkin, , J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles”, Opt. Lett., vol. 11, pp. 286, 1986.
    [14] S. Smith, Y. Cui and C. Bustamante, “Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules,” Science, vol. 271, pp. 795-799, 1996
    [15] Y. Cui, The elasticity of single DNA molecules and chromatin fibers determined by force measuring laser tweezers, PhD dissertation, University of Oregon , 1998, pp. 51.
    [16] D. E. Smith, S. J. Tans, S. B. Smith, S. Grimes, D. L. Anderson and C. Bustamante, “The bacteriophage ψ29 portal motor can package DNA against a large internal force, ” Nature, vol. 413, pp. 748-pp.752, 2001.
    [17] J. F. Leger, G. Romans, A. Sarkar, J. Robert, L. Bourdieu, D. Chatenay and J. F. Marko, “Structural transitions of a twisted and stretched DNA module, ” Phys. Rev. Lett., 83, 1066-1069, 1999.
    [18] A. Sarkar, J. F. Leger, D. Charenay and J. F. Marko, “Structural transitions in DNA driven by external force and torque,” Phys. Rev. E., 63, 51903, 2001.
    [19] C. G. Baumann, V. A. Bloomfield, S. B. Smith, C. Bustamante, M. D. Wang and S. Block, “Stretching of single collapsed DNA molecules, ” Biophys. J., vol. 78, pp.1965-1978, 2000.
    [20] J. F. Allemand, D. Bensimon, R. Lavery and V. Coqustte, “Stretched and overwound DNA forms a pauling-like structures with exposed bases, ” Proc. Natl. Acad. Sci. USA, vol. 95, pp. 14152-14157, 1998.
    [21] M. Rief, H. Clausen-Schaumann and H. Gaub, “Sequence-dependent mechanics of single DNA molecules,” Nature, vol. 6, no. 4, 1999.
    [22] U. Bockelmann, Ph. Thomen, B. Essevaz-Roulet, V. Viasnoff and F. Heslot, “Unzipping DNA with optical tweezers: high sequence sensitivity and force flips,” Biophy. J., vol. 82, pp. 1537-1553, 2002.
    [23] P. Thomen, U. Bockelmann and F. Heslot, “Rotational drag on DNA: a single molecule experiment,” Phys. Rev. Lett., vol. 88, no. 24, pp. 248102-1, 2002.
    [24] C. Benham, “Onset of writhing in circular elastic polymers,” Phys. Rev. A, 39, pp.2582-2586, 1989.
    [25] J. A. Schellman, “Flexibility of DNA,” Biopolymers, vol. 13, pp. 217-226, 1974.
    [26] J. F. Marko and E. D. Siggiaa, “Statistical mechanics of supercoiled DNA,” Phys. Rev. E, vol. 52, no. 3, pp. 2912-pp.2938, 1995.
    [27] M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science, vol. 282, pp.902-907, 1998.
    [28] Y. Zhang, H. Zhou and Z. Ou-Yang, “Stretching single-stranded DNA: interplay of electrostatic, base-pairing, and base-pair stacking interactions,” Biophy. J., vol. 81, pp. 1133- 1143, 2001.
    [29] H. Zhou, Y. Zhang and Z. Ou-Yang, “Elastic property of single double-stranded DNA molecules: theoretical study and comparison with experiments,” Phys. Rev. E, vol. 62, no. 1, pp. 1045-1058, 2000.
    [30] R. Zandi and J. Rudnick, “Constraints, histones, and the 30-nm spiral,” Phys. Rev. E, vol. 64, pp. 51918-1 - pp.51918-18, 2001.
    [31] S. Block, E. P. D. Pednault and W. K. Olson, “Nucleic acid structure analysis mathematics for local Cartesian and helical structure parameters that are truly comparable between structures,” J. Mol. Biol., vol. 237, pp. 125-pp. 156, 1994.
    [32] S. Wolfl, W. Vahrson and A. Herbers, “Analysis of left-handed Z-DNA in vivo,” DNA and nucleoprotein structure in vivo, H. P. Saluz and K. Wiebauer ed., Landes Company, pp. 137-pp.158, 1995.
    [33] N. R. Cozzarelli and T. C. Boles, “Primer on the topology and geometry of DNA supercoiling,” DNA topology and its biological effects, N. R. Cozzarelli and J. C. Wang ed., Cold Spring Harbor Laboratory, 1990.
    [34] H. Clausen-Schaumann, M. Rief, C. Tolksdorf and H. E. Gaub, “Mechanical stability of single DNA molecules,” Biophys. J., vol. 78, pp. 1997-pp.2007, 2000.
    [35] J. F. Marko, “DNA under high tension: overstretching, under twisting, and relaxation dynamics,” Phys. Rev. E, vol. 57, no. 2, pp. 2134-2149, 1998
    [36] C. Bustamante, S. B. Smith, J. Liphardt and D. Smith, “Single-molecule studies of DNA mechanics,” Struct. Biol., vol. 10, pp. 279-pp. 285, 2000.
    [37] D. Bensimon, A. J. Simon, V. Croquette and A. Bensimon, “Stretching DNA with a receding meniscus: experiments and models,” Phys. Rev. Lett., vol. 74, no 23, pp. 4754-4757, 1995.
    [38] M. E. Hogan and R. H. Austin, “Importance of DNA stiffness in protein-DNA binding specificity,” Nature, vol. 329, pp. 263, 1987.
    [39] C. D. Mote, Jr., “Global-local finite element,” Intl, J. Numer. Methods Eng., vol. 3, pp. 565-574, 1971.
    [40] A. S. D. Wang and F. W. Corssman, “Some new results on edge effect in symmetric composite laminates,” J. Composite Mat., vol. 11, pp. 92, 1977
    [41] N. J. Pagano, “Stress fields in composite laminates,” Int. J. Solids Structures, vol. 14, pp. 385, 1978
    [42] N. J. Pagano and S. R. Soni, “Global-local laminate variational model,” Int. J. Solids Structures, vol. 19, no. 3, pp. 207-228, 1983.
    [43] G. Yu, G. Tzeng, S. Chaturvedi, H. Adeli and S. Q. Zhang, “A finite element approach to global-local modeling in composite laminate analysis,” Computer & Structures, vol. 57, pp. 1035- 1044, 1995.
    [44] S. B. Dong, “Global-local finite element methods,” State-of-the-art surveys on finite element technology, A. K. Noor and W. D. Pilkey ed., pp. 451-474, 1983.
    [45] J. N. Goodier, “The characteristic property of Saint-Venant's solutions for the problems of torsion and bending in elastic rods by a set of physically plausible assumptions,” Phil. Mag., vol. 23, 186-190, 1937.
    [46] J. N. Goodier, “A general proof of Saint-venant's principle,” Phil. Mag., vol. 23, pp. 607-609, 1937.
    [47] C. C. Jara-Almonte and C. E. Knight, “The specified boundary stiffness/force SBSF method for finite element subregion analysis,” Intl. J. Numer. Methods Eng., vol. 26, pp. 1567-1578, 1988.
    [48] J. B.Ransom and N. F. Knight, Jr, “Global/local stress analysis of composite panels,” Computers & Structures, vol. 37, no. 4, pp. 375-395, 1990.
    [49] A. K. Noor, “Global-local methodologies and their application to non-linear analysis,” Finite Elem. Anal. Des., vol. 2, pp 333-346, 1986.
    [50] A. K. Noor, and J. M. Peters, “Nonlinear analysis via global-local mixed finite element approach,” Intl. J. Numer. Method Eng., vol. 16, pp. 1363-1380, 1980.
    [51] J. Lou and C. T. Sun, “Global-local methods for thermo-elastic stress analysis of thick fiber-wound cylinders,” J. Compos. Mater., vol. 25, pp. 453-468, 1991.
    [52] O. H. Griffin and M. A. Vidussoni, “Global/local finite element analysis of composite materials,” Intl. Conf. on computer aided design in composite material technology, Springer, Berlin, 1988.
    [53] S. R. Voleti, N. Chandra, and J. R. Miler, “Global-local analysis of large-scale composite structures using finite element,” Computers & Structures, vol. 58, no. 3, pp. 453-464, 1996.
    [54] J. S. Corbin, “Finite Element Analysis for Solder Ball Connect (SBC) Structure Design Optimization,” IBM J. Res. Develop., Vol. 37, No. 5, pp. 585-596, 1993.
    [55] H. C. Cheng, K. N. Chiang, and M. H. Lee, “An Effective Approach for Three Dimensional Finite Element Analysis of Ball Grid Array Typed Packages,” ASME J. Electron. Packag., Vol. 120, No. 2, pp. 129-134,1998.
    [56] K. N. Chiang and W. H. Chen, “Electronic Packaging Reflow Shapes Prediction for Solder Mask Defined Ball Grid Array,” ASME J. Electron. Packag., Vol. 120, No. 2, pp. 175-178, 1998.
    [57] M. Pedersen, Functional analysis in applied mathematics and engineering, Champman & Hall/CRC, NewYork, 2000.
    [58] P. D. Panagiotopoulus, Inequality problems in mechanics and applications, Birkhauser Bonston Inc., Germany, 1987.
    [59] F. Hirsch and G. Lacombe, Elements of functional analysis, Springer, NewYork, 1997.
    [60] P. Ciarlet, Lecture note on the finite element method, TATA institute of fundamental research, Bombay, 1975.
    [61] N. Kikuchi and J. T. Oden, Contact problem in elasticity: a study of variational inequalities and finite element methods, SIAM, Philacephia, 1988.
    [62] J. Wloka, Partial differential equations, Cambridge university press, 1992.
    [63] D. Braess, Finite elements: theory, fast solvers and applications in solid mechanics, Cambridge university press, UK, 1997.
    [64] J. L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, Vol. I & II, Springer-Verlag, 1972.
    [65] F. Treves, Basic linear partial differential equations, Academic press, 1975.
    [66] W. Bangerth and R. Rannacher, Adaptive finite element methods for differential equations, Birkhauser Verlag, Boston, 2003.
    [67] R. Serway, C. Moses and C. Moyer, Modern physics, 2nd ed., Saunders College Publishing, Philadephia, USA, 1997.
    [68] M. Fayer, Elements of quantum mechanics, 1st ed., Oxford University Press, New York, USA, 2001.
    [69] D. Griffiths, Introduction to quantum mechanics, 2nd ed., Pearson Education International, London, UK, 2005.
    [70] P. Dirac, The principles of quantum mechanics, 4th ed., Oxford Science Publications, 1958.
    [71] R. Eisberg and R. Resnick, Quantum physics of atoms, molecules, solids nuclei and particles, 2nd ed., John Wiley and Sons, 1985.
    [72] W. Heisenberg, The physical principles of quantum theory, 1st ed., Dover , New York, 1930.
    [73] R. Feynman, R. Leighton and M. Sands, The Feynman lecture on physics, Vol III, Addison-Wesley Publishing Company, 1963.
    [74] I. Tinoco, Jr., K. Sauer, J. Wang and J. Pugisi, Physical chemistry principles and applications in biological sciences, 4th ed., Prentice Hall, New Jersey, 2002.
    [75] D. Bensimon, A. J. Simon, V. Croquette and A. Bensimon, “Stretching DNA with a receding meniscus: experiments and models,” Phys. Rev. Lett., vol. 74, no 23, pp. 4754-4757, 1995.
    [76] G. A. Jeffery, W. Saneger, Hydrogen Bonding in Biological Structures, 1st ed., Springer-Verlag, Germay, 1994.
    [77] J. Conery, W. Peticolas and T. Rush III, “A parallel Algorithm for Calculating the potential energy in DNA,” Proc. of 28th Annual Hawaii International Conf. on System sciences, pp. 123-pp. 131, Hawaii, USA, 1995
    [76] W. K. Olson, M. Bansal, S. K. Burley, R. E. Dickerson, M. Gerstein, S. C. Harvey, U. Heinemann, X. J. Lu, S. Neidle, Z. Shakked, H. Sklenar, M. Suzuki, C. S. Tung, E. Westhof, C. Wolberger, H. M. Berman, “A standard reference frame for the description of nucleic acid base-pair geometry,” J. Mol. Biol., vol. 313, pp. 229-237, 2001.
    [77] T. Belytschko, W. K. Liu, and B. Moran, Nonlinear finite elements for continua and structures, 1st ed., John Wiley & Sons, NY, USA, 2000.
    [78] J. O. Hallquist, LS-DYNA theory manual, Livermore Software Technology Corp., Livermore, CA, USA, 1998.
    [79] K. Bathe, Finite element procedures, 1st ed., Prentice-Hall Inc, New York, 1996.
    [80] A. E. H. Love, A treatise on the mathematical theory of elasticity, 4th ed., Dorver publications, New York, 1927.
    [81] S. S. Rao, The finite element method in engineering, 3rd ed., Butterworth -Heinemann, Boston, 1999.
    [82] Y. K. Cheung and A. Y. T. Leung, Finite element methods in dynamics, 1st ed., Kluwer academic publishers, New York, 1991.
    [83] K. E. Atkinson, An introduction to numerical analysis, 2rd ed., John Wiley & sons, New York, 1989.
    [84] O. C. Zienkiewicz and R. L. Taylor, The finite element method vol. 2 solid and fluid mechanics dynamics and non-linearity, 4th ed., MaGraw-Hill, 1991.
    [85] R. D. Cook, D. S. Malkus and M. E. Plesha, Concepts and applications of finite element analysis, 3rd ed., John Wiley and Sons, New York, 1989.
    [86] H. Hu, Variational principles of theory of elasticity with applications, 1st ed., Science Press, Beijing, 1984.
    [87] A. A. Hasanein and M. W. Evans, Computational methods in quantum chemistry, 1st ed., World scientific publishing Co. Pte. Ltd., Singapore, 1996.
    [88] M. Rieth, Nano-engineering in science and technology, 1st ed., World Scientific publishing Co., New Jersey, USA, 2003.
    [89] Hoogerbrugge and Koelman. “Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics,” Europhys. Lett., vol. 19. pp. 155-160, 1993.
    [90] J. W. Jenkins, S. Sundaram and V. B. Makhijani, “Coupling between Nanoscale and Microscale Modeling for MicroFluidic Devices,” NSTI Nanotechnology Conference, pp. 447-450, San Juan, Puerto Rico, U.S.A., April 22-25, 2002.
    [91] Malfreyt and Tildesley. “Dissipative Particle Dynamics Simulations of Grafted Polymer Chains between Two Walls” Langmuir, vol. 16, 4732-4740, 2000.
    [92] C. A .Yuan, C. N. Han and K. N. Chiang, “Investigation of the Sequence- Dependent dsDNA Mechanical Behavior using Clustered Atomistic-Continuum Method,” NSTI Nanotechnology Conference, Anaheim, California, U.S.A., May 8-12, 2005.
    [93] C. A. Yuan, C. N. Han and K. N. Chiang, “Atomistic to Continuum Mechanical Investigation of ssDNA and dsDNA using Transient Finite Element Method,” Inter-Pacific Workshop on Nanoscience and Nanotechnology, City University of Hong Kong, Hong Kong SAR., Nov. 22-Nov. 24, 2004,
    [94] C. A. Yuan and K. N. Chiang, “Investigation of dsDNA stretching meso-mechanics using finite Element Method,” 2004 Nanotechnology Conference, March 7-11, 2004, Boston, Massachusetts, U.S.A.
    [95] C. A. Yuan and K. N. Chiang., “Numerical Simulation for B-S Structural Transition of Nicked dsDNA Using Enriched Finite Element Method,” Taiwan International Conference on Nano Science and Technology, HsinChu, Taiwan, June 30-July 3, 2004.
    [96] C. A. Yuan and K. N. Chiang, “Investigation of dsDNA stretching meso-mechanics using LS-DYNA,” FEA information worldwide news(e-journal), May, 2004.
    [97] J. Marko and S. Cocco, “The micromechanics of DNA,” Physics World, pp. 37-41, March, 2003
    [98] G. Bao and S. Suresh, “Cell and molecular mechanics of biological materials,” Nature Materials, vol. 2, pp. 715-725, Nov, 2003.
    [99] EMBO workshop report, 1988.
    available at http://www.ocms.ox.ac.uk/ocms/EMBOworkshop.html
    [100] C. J. Davisson and L. H. Germer, “The scattering of electrons by a single crystal of nickel,” Nature, vol. 119, pp. 558, 1927.
    [101] W. K. Heisenberg, Physics and philosophy: the revolution in modern science, 1st ed., Prometheus Books, New York, USA, 1958.
    [102] A. Rae, Quantum physics: illusion or reality, 2nd ed., Cambridge University Press, Cambridge, 2002.
    [103] H. Margenau, Physics and philosophy: selected essays, 1st ed., D. Reidel publishing company, Boston, USA, 1978.
    [104] W. Pauli, Writings on physics and philosophy, 1st ed., Springer-Verlag, Germany, 1994.
    [105] F. S. C. Northrop, “Introduction”, in [82].
    [106] H. Margenau, The nature of physical reality, 1st ed., McGraw Hill Book Co., Inc., New York, 1950.
    [107] A. Einstein, “Considerations concerning the fundaments of theoretical physics,” Science, vol. 91, pp.487-492, 1940.
    [108] D. Frenkel and B. Smit, Understanding molecular simulation, 2nd ed., Academic press, San Diego, 2002.
    [109] S.P. Xiao, T. Belytschko, “A bridging domain method for coupling continua with molecular dynamics,” Computer Methods in Applied Mechanics and Engineering, vol. 193, pp. 1645-1669, 2004.
    [110] T. Belytschko and S. P. Xiao, “Coupling methods for continuum model with molecular model, ” Intl. J. Multiscale computation Engr., vol. 1, pp. 100-112, 2003.
    [111] D. Srivastava and S. N. Atluri, “Computational nanotechnology: a current perspective,” CMES: Computer Modeling in Engineering & Science, vol. 3, no. 5, pp. 531-538, 2002.
    [112] S. Shen and S. N. Atluri, “Multiscale simulation based on the meshless local Petrov-Galerkin (MLPG) method,” CMES: Computer Modeling in Engineering & Science, vol. 5, no. 3, pp. 235-255, 2005.
    [113] S. N. Atluri and S. Shen, “The meshless local Petrov-Galerkin (MLPG) method: a simple & less-costly alternative to the finite element and boundary element methods,” CMES: Computer Modeling in Engineering & Science, vol. 3, no. 1 pp. 11-51, 2002.
    [114] G. Gibson, S. V. Muse, A primer of genome science, 1st ed., Sinauer associates, New York, 2002.
    [115] D. P. Snustad and M. J. Simmons, Principles of genetics, 2rd ed., John Wiley and sons, New York, 1999.
    [116] M. Hirshberg and M. Levitt, “Simulating the dynamics of DNA double helix in solution,” in Dynmics and the problem of recongnition in biological macromolecules, O. Jardetzky and J. Lefevre ed., Plenum press, New York, 1995.
    [117] D. M. Soumpasis and T. M. Jovin (eds), Computation of biomolecular structures: achievements, problems and perspectives, Springer-Verlag, Berlin, 1992.
    [118] R. R. Sinden, DNA structure and function, 1st ed., Acadmic press, New York, 1994.
    [119] P. Ritter, Biochemistry: a foundation, 1st ed., International Thomson publishing, 2002.
    [120] S. Cocco, R. Monasson and J. F. Marko, “Uncipping dynamics of long DNAs,” Phys. Rev. E, vol. 66, pp. 51914, 2002.
    [121] M. Bates, M. Burns and A. Meller, “Dynamics of DNA molecules in membrane channel probed by active control techniques,” Biophys. J., vol. 84, pp. 2366-2372, 2003.
    [122] J. Mathe, H. Visram, V. Viasnoff, Y. Rabin and A. Meller, “Nanopore unzipping of individual DNA hairpin molecules,” Biophys. J., vol. 87, pp. 3205-3212, 2004.
    [123] C. Danilowicz, V. Coljee, C. Bouzigues, D. Lubensky, D. Nelson and M. prentiss, “DNA unzipped under a constant force exhibits multiple metastable intermediates,” Proc. Natl. Acad. Sci. USA, vol. 100, no. 4, pp. 1694, 2003.
    [124] S. J. Koch, A. Shundrovsky, B. Jantzen and M. D. Wang, “Probing protein-DNA interactions by unzipping a single DNA double helix,” Biophys. J., vol. 83, pp. 1098-1105, 2002.
    [125] A. F. Sauer-Budge, J. A. Nyamwanda, D. Lubensky and D. Barnton, “Unzipping kinetics of double-stranded DNA in a nanopore,” Phys. Rev. Lett., vol. 90, no. 23, pp. 23801, 2003.
    [126] K. A. Brakke, “The Surface Evolver and the Stability of Liquid Surface,” Phil. Trans.: Mathematical, Physical and Engineering Sci., Vol. 354, pp. 2143-2157, 1996.
    [127] K. N. Chiang and C. A. Yuan, “An Overview of Solder Bump Shape Prediction Algorithms with Validations,” IEEE Transactions on Advanced Packaging, Vol. 24, No. 2, pp.158-162, 2001.
    [128] G. R. Cowper, “The Shear Coefficient in Timoshenko's Beam Theory,” ASME J. Applied Mechanics, Vol. 33, No. 2, pp.335-340, 1966.
    [129] D. E. Riemer, “Prediction of Temperature Cycling Life for SMT Solder Joints on TCE-Mismatched Substrates,” Proceedings of 40th Electronic Components and Technology Conference, Vol. 1, pp. 418-425, Las Vegas, USA, 1990.
    [130] K. M. Chen and K. N. Chiang, “An analytic methodology for prediction of probing depth in integrated circuit structures,” the Proceedings of the 19th Chinese Mechanical Engineering Conference, Taiwan, pp. 427-434 Nov 2002.
    [131] G. Hotchkiss, G. Ryan, W. Subido, J. Borz, S. Mitchell, R. Rincon, R. Rolda and L. Guimbaolibot, “Effects of probe damage on wire bond integrity,” Electronic Components and Technology Conference, pp. 1175-1180, Florida, USA, May 2001.
    [132] Q. Tan, C. Beddingfield and A. Mistry, “Reliability evaluation of probe-before-bump technology,” IEEE/CPMT Int'l Electronics Manufacturing Technology Symposium, pp. 320-324,Austin Texas, 1999.
    [133] P. M. Gaschke, “Vertical probe housing,” US Patent, 6,196,866 B1, 2001.
    [134] R. D. Bates, “The search for the universal probe card solution,” IEEE Int'l Test Conference, pp. 533-538, Washington, D. C., USA, Nov 1997.
    [135] J. J. Broz, J. C. Andersen, and R. M. Rincon, “Reducing devices yield fallout at wafer level test with electrohydrodynamic (EHD) cleaning,” IEEE/ITC Int'l Test Conference, pp. 477-484, Washington, D. C., USA, Oct 2000.
    [136] “HPFS R Standard Grade, Corning code 7890,” Corning Incorporated and Subsidiary Companies, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE