研究生: |
曾璽廷 Tseng, Hsi-Ting |
---|---|
論文名稱: |
NTHU-13系列鎵鋅亞磷酸鹽催化性質研究與錳次磷酸鹽之合成、結構與性質研究 (1) Catalytic Property Study for Gallium Zincophosphites of the NTHU-13 Series (2) Syntheses, Polymorphs and Structure-Property Relationships of Manganese Hypophosphites |
指導教授: |
王素蘭
Wang, Sue-Lein |
口試委員: |
林嘉和
Lin, Chia-Her 李光華 Lii, Kwang-Hwa |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 256 |
中文關鍵詞: | 鎵鋅亞磷酸鹽 、二氧化碳環加成催化 、金屬次磷酸鹽 、相轉變 |
外文關鍵詞: | Gallium Zincophosphites, CO2 Cycloaddition, Metal Hypophosphites, Phase transition |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文分為兩個主題,主題一為開發NTHU-13系列化合物的催化應用並且探討其催化活性位置;主題二為錳次磷酸鹽的合成及性質研究。本研究中所合成的化合物皆藉由單晶X光繞射儀鑑定結構以及由粉末X光繞射儀確認產物純度,其後再針對每個化合物的特性進行性質量測與開發應用。
在主題一的研究中,依據NTHU-13系列結構的建構單元的結構特性,推測其中的建構單元C [Zn(HPO3)2(H2O)4]2–可能具有二氧化碳環加成催化的潛力,首先確認了NTHU-13系列中四十員環對二氧化碳與環氧丙烷環加成反應生成碳酸丙烯酯具有催化活性。而後固定相同的催化反應條件,利用同屬NTHU-13系列沒有建構單元C的二十四員環,以及在每個晶格單元中建構單元C較多的五十六員環與上述的四十員環比較催化效率,確認建構單元C的數量與催化轉換率呈現正相關,再藉由與四十員環具有相同建構單元C數量的二十八員環比較,證實轉換效率與結構員環數無關。將四十員環的建構單元C部分摻雜鎂金屬,可進一步使催化轉換率提升,此外將建構單元A完全置換成鋁金屬,則發現其催化效率差異不大,再度證實了建構單元C是催化活性位的假設。
鑒於金屬次磷酸的合成與性質探討在文獻上仍非常有限,主題二的研究利用水熱合成以及對環境較為友善的蒸氣擴散法(vapor diffusion)合成出五個錳次磷酸鹽化合物,其無機結構的化學式皆可用(Mn(H2PO2)2)表示;依結構是否含溶劑分子,可再將其區分為三種純無機的同分異構物 (polymorphs),命名為A1-A3,以及結構孔洞中含有機溶劑的A4及A5,並對各個化合物的熱穩定性、放光性質及磁性進行量測並討論,其中發現A2及A3在加熱過程中均會相轉變成A1。另外也發現一些結構可藉由摻雜鎂金屬可以影響結構的熱穩定性。
總結本論文成果,首先成功證實NTHU-13系列結構對二氧化碳環加成反應之催化活性及反應活性位,為NTHU-13系列的金屬亞磷酸鹽晶性孔洞材料之實用性的研究向前邁進一步。其次,本研究利用對環境友善的合成法開發了數個錳次磷酸結構,並提供了相關的性質研究,期許能對後續其他金屬次磷酸鹽的合成與應用有所啟發。
This thesis focuses on two topics: topic A is to develop the application of NTHU-13 series as heterogeneous catalysts for cycloaddition reaction of CO2 and epoxide, namely CO2 fixation; topic B presents the syntheses, polymorphs and structure-property relationships of manganese hypophosphites. All of the compounds were obtained either by hydrothermal synthesis or vapor diffusion crystallization and structurally characterized by single crystal X-ray diffraction. The sample purity was verified by comparing as-measured with calculated powder X-ray diffraction patterns before further physical property measurements.
In topic A, it was conjectured that 40R(Ga) could be a catalyst in CO2 fixation because of the unique structural building unit of [Zn(HPO3)2(H2O)4]2– named Block C. By comparing the catalysis efficiencies of 56R(Ga) and 24R(Ga), 56R(Ga) showed higher catalytic efficiency but 24R(Ga) was almost catalytically inactive because they contained different numbers of Block C. It could be realized that the more Block C (i.e. 56R(Ga)) the structure had, the higher catalytic efficiency it could perform. 28R(Ga), which had the same number of Block C in comparison with 40R(Ga), showed the same catalytic efficiency as 40R(Ga). Additionally, we doped Mg in the metal center of Block C, named Mg@40R(Ga) and also replaced the metal centers of Block A by aluminum, named 40R(Al). Interestingly, the results showed that the catalytic efficiency of Mg@40R(Ga) was raised whereas that of the 40R(Al) remained the same with 40R(Ga). These results proved that Block C was the catalytic activity center, and the ring size or the other building blocks did not affect the catalytic activity. Two possible mechanisms were proposed to discuss the process of CO2 fixation by using NTHU-13 series material.
In topic B, five manganese hypophosphites were introduced. According to whether the structure possesses solvent molecules or not, these compounds can be classified into two categories. Firstly, three polymorphs (A1~A3) with the formula of Mn(H2PO2)2 contained infinite chains of edge-sharing MnO6, which were connected by H2PO2 pseudo-tetrahedra to form different topologies including layer and 3D framework. The compounds, A4 and A5, comprised organic solvents in the structure to give the formula of Mn(H2PO2)2·x(solvent). Except via hydrothermal synthesis, we successfully utilized vapor diffusion crystallization to synthesize these compounds. One of the pivotal results of this section is that A2 and A3 could be phase transformed into A1 by thermal treatment. Besides, with the incorporation of Mg2+ into Mn2+ sites, the thermal stability of A6 structure could be improved. I hope that these manganese hypophosphites prepared via an environmentally friendly method could have practicability in the future.
(a)J. M. Thomas, R. Raja, G. Sankar, R. G. Bell, Nature 1999, 398, 227; (b)J. M. Thomas, Angew. Chem. Int. Ed. 1999, 38, 3588-3628; (c)R. D. Miller, Science 1999, 286, 421-423; (d)D. Britt, H. Furukawa, B. Wang, T. G. Glover, O. M. Yaghi, Proceedings of the National Academy of Sciences 2009, 106, 20637-20640; (e)Y. Cheng, A. C. Samia, J. D. Meyers, I. Panagopoulos, B. Fei, C. Burda, J. Am. Chem. Soc. 2008, 130, 10643-10647; (f)A. R. Millward, O. M. Yaghi, J. Am. Chem. Soc. 2005, 127, 17998-17999;(g)G. Qi, J. Xu, J. Su, J. Chen, X. Wang, F. Deng, J. Am. Chem. Soc. 2013, 135, 6762-6765;(h)M. Sadakiyo, T. Yamada, H. Kitagawa, J. Am. Chem. Soc. 2011, 133, 11050-11053; (i)Y. Takashima, V. M. Martínez, S. Furukawa, M. Kondo, S. Shimomura, H. Uehara, M. Nakahama, K. Sugimoto, S. Kitagawa, Nature Communications 2011, 2, 168;(j)D. Umeyama, S. Horike, M. Inukai, T. Itakura, S. Kitagawa, J. Am. Chem. Soc. 2012, 134, 12780-12785.
2. A. F. Cronstedt, Rön och beskrifning om en obekant bärg art, som kallas Zeolites, 1756.
3. S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan, E. M. Flanigen, J. Am. Chem. Soc. 1982, 104, 1146-1147.
4. (a)M. E. Davis, C. Saldarriaga, C. Montes, J. Garces, C. Crowdert, Nature 1988, 331, 698; (b)M. Estermann, L. McCusker, C. Baerlocher, A. Merrouche, H. Kessler, Nature 1991, 352, 320; (c)P. B. Moore, J. Shen, Nature 1983, 306, 356; (d)賴宇倫, 清華大學化學系所學位論文 2008, 1-361.
5. (a)Y.-C. Chang, S.-L. Wang, J. Am. Chem. Soc. 2012, 134, 9848-9851; (b)H. L. Huang, S. L. Wang, Angewandte Chemie International Edition 2015, 54, 965-968; (c)S. H. Huang, C. H. Lin, W. C. Wu, S. L. Wang, Angew. Chem. Int. Ed. 2009, 48, 6124-6127; (d)S. H. Huang, S. L. Wang, Angewandte Chemie International Edition 2011, 50, 5319-5322; (e)P. C. Jhang, N. T. Chuang, S. L. Wang, Angew. Chem. 2010, 122, 4296-4300; (f)P. C. Jhang, Y. C. Yang, Y. C. Lai, W. R. Liu, S. L. Wang, Angewandte Chemie International Edition 2009, 48, 742-745; (g)Y.-L. Lai, K.-H. Lii, S.-L. Wang, J. Am. Chem. Soc. 2007, 129, 5350-5351; (h)Y.-C. Liao, Y.-C. Jiang, S.-L. Wang, J. Am. Chem. Soc. 2005, 127, 12794-12795; (i)Y.-C. Liao, F.-L. Liao, W.-K. Chang, S.-L. Wang, Journal of the American Chemical Society 2004, 126, 1320-1321; (j)Y.-C. Liao, C.-H. Lin, S.-L. Wang, J. Am. Chem. Soc. 2005, 127, 9986-9987; (k)C.-H. Lin, S.-L. Wang, K.-H. Lii, J. Am. Chem. Soc. 2001, 123, 4649-4650; (l)H.-Y. Lin, C.-Y. Chin, H.-L. Huang, W.-Y. Huang, M.-J. Sie, L.-H. Huang, Y.-H. Lee, C.-H. Lin, K.-H. Lii, X. Bu, Science 2013, 1232097; (m)M.-J. Sie, C.-H. Lin, S.-L. Wang, J. Am. Chem. Soc. 2016, 138, 6719-6722; (n)Y.-C. Yang, S.-L. Wang, Journal of the American Chemical Society 2008, 130, 1146-1147.
6. 牧智勤, 清華大學化學系所學位論文 2015, 1-164.
7. N. Taleb, V. J. Richards, S. P. Argent, J. van Slageren, W. Lewis, A. J. Blake, N. R. Champness, Dalton transactions 2011, 40, 5891-5894.
8. S. Tamilarasan, S. Laha, S. Natarajan, J. Gopalakrishnan, Journal of Materials Chemistry C 2015, 3, 4794-4800.
9. Y. Yang, J. Liu, C. Liang, L. Feng, T. Fu, Z. Dong, Y. Chao, Y. Li, G. Lu, M. Chen, ACS nano 2016, 10, 2774-2781.
10. T.-Y. Tan, N. Martin, Q. Zhou, B. J. Kennedy, Q. Gu, J. A. Kimpton, Z. Zhang, L.-Y. Jang, Journal of Solid State Chemistry 2013, 201, 115-127.
11. S. Millar, Wiley-VCH Verlag, 2012.
12. 王素蘭, 科儀新知 2005, 48-54.
13. B. Apex, Madison, WI 2008.
14. G. Sheldrick, Bruker-Axs: Madison, WI 1998.
15. I. Brown, D. Altermatt, Acta Crystallographica Section B 1985, 41, 244-247.
16. G. A. Bain, J. F. Berry, Journal of Chemical Education 2008, 85, 532.
1. (a)G. Cui, J. Wang, S. Zhang, Chemical Society Reviews 2016, 45, 4307-4339; (b)E. S. Rubin, C. Chen, A. B. Rao, Energy policy 2007, 35, 4444-4454.
2. E. S. Rubin, J. E. Davison, H. J. Herzog, International Journal of Greenhouse Gas Control 2015, 40, 378-400.
3. Q. Liu, L. Wu, R. Jackstell, M. Beller, Nature communications 2015, 6, 5933.
4. David,Gobal Polypropylene Carbonate(PCC)Marrket 2018-Research Report 2018.
5. (a)A. Decortes, A. M. Castilla, A. W. Kleij, Angewandte Chemie International Edition 2010, 49, 9822-9837; bR. L. Paddock, S. T. Nguyen, Journal of the American Chemical Society 2001, 123, 11498-11499.
6. J. Sun, S.-i. Fujita, B. M. Bhanage, M. Arai, Catalysis today 2004, 93, 383-388.
7. (a)S. Zhang, Y. Chen, F. Li, X. Lu, W. Dai, R. Mori, Catalysis Today 2006, 115, 61-69; (b)J. Sun, S. Zhang, W. Cheng, J. Ren, Tetrahedron Letters 2008, 49, 3588-3591.
8. Z. Xue, J. Jiang, M.-G. Ma, M.-F. Li, T. Mu, ACS Sustainable Chemistry & Engineering 2017, 5, 2623-2631.
9. J. W. Maina, C. Pozo-Gonzalo, L. Kong, J. Schütz, M. Hill, L. F. Dumée, Materials Horizons 2017, 4, 345-361.
10. D. Farrusseng, S. Aguado, C. Pinel, Angewandte Chemie International Edition 2009, 48, 7502-7513.
11. J. Song, Z. Zhang, S. Hu, T. Wu, T. Jiang, B. Han, Green Chemistry 2009, 11, 1031-1036.
12. (a)L. Yang, L. Yu, G. Diao, M. Sun, G. Cheng, S. Chen, Journal of Molecular Catalysis A: Chemical 2014, 392, 278-283; (b)J. Liang, R.-P. Chen, X.-Y. Wang, T.-T. Liu, X.-S. Wang, Y.-B. Huang, R. Cao, Chemical science 2017, 8, 1570-1575; (c)M. North, R. Pasquale, Angewandte Chemie International Edition 2009, 48, 2946-2948.
13. P. T. Nguyen, H. T. Nguyen, H. N. Nguyen, C. A. Trickett, Q. T. Ton, E. Gutiérrez-Puebla, M. A. Monge, K. E. Cordova, F. Gándara, ACS applied materials & interfaces 2017, 10, 733-744.
14. 牧智勤, 清華大學化學系所學位論文 2015, 1-164.
15. 謝明哲, 清華大學化學系所學位論文 2016, 1-231.
16. 黃文彥, 清華大學化學系所學位論文 2015, 1-272.
17. 賴宇倫, 清華大學化學系所學位論文 2008, 1-361.
18. T. Ema, Y. Miyazaki, S. Koyama, Y. Yano, T. Sakai, Chemical communications 2012, 48, 4489-4491.
19. L. Zhang, S. Yuan, L. Feng, B. Guo, J. S. Qin, B. Xu, C. Lollar, D. Sun, H. C. Zhou, Angewandte Chemie International Edition 2018, 57, 5095-5099.
20. B. Mousavi, S. Chaemchuen, B. Moosavi, K. Zhou, M. Yusubov, F. Verpoort, ChemistryOpen 2017, 6, 674-680.
21. 黃惠琳, 清華大學化學系所學位論文 2012, 1-357.
22. J.-Q. Wang, J. Sun, W.-G. Cheng, K. Dong, X.-P. Zhang, S.-J. Zhang, Physical Chemistry Chemical Physics 2012, 14, 11021-11026.
23. D. Bai, H. Jing, Q. Liu, Q. Zhu, X. Zhao, Catalysis Communications 2009, 11, 155-157.
24. Q.-W. Song, Z.-H. Zhou, L.-N. He, Green Chemistry 2017, 19, 3707-3728.
1. J. M. Thomas, R. Raja, G. Sankar, R. G. Bell, Nature 1999, 398, 227.
2. X. Su, L. Bromberg, V. Martis, F. Simeon, A. Huq, T. A. Hatton, ACS applied materials & interfaces 2017, 9, 11299-11306.
3. Y. T. Chang, S. H. Lo, C. H. Lin, L. I. Hung, S. L. Wang, Chemistry–A European Journal 2018, 24, 12474-12479.
4. M. P. Suh, H. J. Park, T. K. Prasad, D.-W. Lim, Chemical reviews 2011, 112, 782-835.
5. (a)Y.-C. Liao, C.-H. Lin, S.-L. Wang, Journal of the American Chemical Society 2005, 127, 9986-9987; (b)Y.-C. Liao, Y.-C. Jiang, S.-L. Wang, Journal of the American Chemical Society 2005, 127, 12794-12795; (c)Y.-C. Liao, F.-L. Liao, W.-K. Chang, S.-L. Wang, Journal of the American Chemical Society 2004, 126, 1320-1321; (d)C.-H. Lin, S.-L. Wang, K.-H. Lii, Journal of the American Chemical Society 2001, 123, 4649-4650.
6. H.-Y. Lin, C.-Y. Chin, H.-L. Huang, W.-Y. Huang, M.-J. Sie, L.-H. Huang, Y.-H. Lee, C.-H. Lin, K.-H. Lii, X. Bu, Science 2013, 339, 811-813.
7. Y.-C. Yang, S.-L. Wang, Journal of the American Chemical Society 2008, 130, 1146-1147.
8. P. C. Jhang, Y. C. Yang, Y. C. Lai, W. R. Liu, S. L. Wang, Angewandte Chemie International Edition 2009, 48, 742-745.
9. P. C. Jhang, N. T. Chuang, S. L. Wang, Angewandte Chemie International Edition 2010, 49, 4200-4204.
10. S. H. Huang, S. L. Wang, Angewandte Chemie International Edition 2011, 50, 5319-5322.
11. H. L. Huang, S. L. Wang, Angewandte Chemie International Edition 2015, 54, 965-968.
12. S. H. Huang, C. H. Lin, W. C. Wu, S. L. Wang, Angewandte Chemie International Edition 2009, 48, 6124-6127.
13. M.-J. Sie, C.-H. Lin, S.-L. Wang, Journal of the American Chemical Society 2016, 138, 6719-6722.
14. 謝宗修, 清華大學化學系所學位論文 2017, 1-153.
15. J. Goedkoop, B. Loopstra, Ned. Tijdschr. Natuurkd 1959, 25, 29-41.
16. P. A. Tanner, L. Yu-Long, T. C. Mak, Polyhedron 1997, 16, 495-505.
17. N. V. Kuratieva, M. I. Naumova, N. V. Podberezskaya, D. Y. Naumov, Acta Crystallographica Section C: Crystal Structure Communications 2005, 61, i14-i16.
18. M. Marcos, R. Ibáñez, P. Amorós, A. Le Bail, Acta Crystallographica Section C: Crystal Structure Communications 1991, 47, 1152-1155.
19. N. V. Kuratieva, M. I. Naumova, D. Y. Naumov, N. V. Podberezskaya, Acta Crystallographica Section E: Structure Reports Online 2003, 59, i89-i91.
20. N. V. Kuratieva, M. I. Naumova, D. Y. Naumov, Acta Crystallographica Section C: Crystal Structure Communications 2002, 58, i129-i131.
21. D. Y. Naumov, N. V. Kuratieva, Acta Crystallographica Section C 2006, 62, i9-i10.
22. H. A. Maouel, V. Alonzo, T. Roisnel, H. Rebbah, E. Le Fur, Acta Crystallographica Section C: Crystal Structure Communications 2009, 65, i36-i38.
23. M. Marcos, P. Amoros, F. Sapina, D. Beltrán, Journal of alloys and compounds 1992, 188, 133-137.
24. M. S. Ghattas, Journal of Molecular Catalysis A: Chemical 2006, 248, 175-180.
25. J.-L. Xie, Y.-H. Zhou, L.-H. Li, J.-H. Zhang, J.-L. Song, Dalton transactions 2017, 46, 9339-9343.
26. R.-K. Jian, L. Chen, B. Zhao, Y.-W. Yan, X.-F. Li, Y.-Z. Wang, Industrial & Engineering Chemistry Research 2014, 53, 2299-2307.
27. M. Deyá, G. Blustein, R. Romagnoli, B. del Amo, Journal of Coatings Technology and Research 2009, 6, 369-376.
28. Y. Wu, S. Shaker, F. Brivio, R. Murugavel, P. D. Bristowe, A. K. Cheetham, Journal of the American Chemical Society 2017, 139, 16999-17002.
29. Y. Wu, T. Binford, J. A. Hill, S. Shaker, J. Wang, A. K. Cheetham, Chemical communications 2018, 54, 3751-3754.
30. Y. Wu, D. M. Halat, F. Wei, T. Binford, I. D. Seymour, M. W. Gaultois, S. Shaker, J. Wang, C. P. Grey, A. K. Cheetham, Chemistry–A European Journal 2018, 24, 11309-11313.
31. Z. Deng, I. E. Collings, Y. Wu, J. L. Andrews, K. Pilar, J. M. Tuffnell, G. Wu, J. Wang, S. E. Dutton, P. D. Bristowe, CHEMICAL COMMUNICATIONS-ROYAL SOCIETY OF CHEMISTRY 2019, 55, 2964-2967.
32. Y. Yang, J. Liu, C. Liang, L. Feng, T. Fu, Z. Dong, Y. Chao, Y. Li, G. Lu, M. Chen, ACS nano 2016, 10, 2774-2781.
33. S. Tamilarasan, S. Laha, S. Natarajan, J. Gopalakrishnan, Journal of Materials Chemistry C 2015, 3, 4794-4800.
34. T.-Y. Tan, N. Martin, Q. Zhou, B. J. Kennedy, Q. Gu, J. A. Kimpton, Z. Zhang, L.-Y. Jang, Journal of Solid State Chemistry 2013, 201, 115-127.
35. K. Yuan, T. Song, D. Wang, Y. Zou, J. Li, X. Zhang, Z. Tang, W. Hu, Nanoscale 2018, 10, 1591-1597.
36. J. Y. Luo, Y. Y. Xia, Advanced Functional Materials 2007, 17, 3877-3884.
37. N. Taleb, V. J. Richards, S. P. Argent, J. van Slageren, W. Lewis, A. J. Blake, N. R. Champness, Dalton transactions 2011, 40, 5891-5894.
38. Y. Chen, C. Yang, X. Wang, J. Yang, K. Ouyang, J. Li, Journal of Materials Chemistry A 2016, 4, 10345-10351.
39. O. R. Evans, R. G. Xiong, Z. Wang, G. K. Wong, W. Lin, Angewandte Chemie International Edition 1999, 38, 536-538.
40. A. C. Dreischarf, M. Lammert, N. Stock, H. Reinsch, Inorganic chemistry 2017, 56, 2270-2277.
41. 廖曰淳, 清華大學化學系所學位論文 2005.
42. (a)D. Y. Naumov, M. I. Naumova, N. V. Kuratieva, E. V. Boldyreva, J. A. Howard, Acta Crystallographica Section C: Crystal Structure Communications 2002, 58, i55-i60; (b)T. Weakley, Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry 1979, 35, 42-45.
43. M. Viertelhaus, C. E. Anson, A. K. Powell, Zeitschrift für anorganische und allgemeine Chemie 2005, 631, 2365-2370.
44. D. Y. Naumov, M. I. Naumova, N. V. Kuratieva, Acta Crystallographica Section E: Structure Reports Online 2005, 61, i251-i252.
45. G. A. Bhat, P. Vishnoi, S. K. Gupta, R. Murugavel, Inorganic Chemistry Communications 2015, 59, 84-87.
46. J. Galigné, Y. Dumas, Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry 1973, 29, 1115-1119.
47. H. A. Evans, Z. Deng, I. E. Collings, Y. Wu, J. L. Andrews, K. Pilar, J. M. Tuffnell, G. Wu, J. Wang, S. E. Dutton, Chemical communications 2019, 55, 2964-2967.
48. Y. Yoshida, K. Inoue, N. Kyritsakas, M. Kurmoo, Inorganica Chimica Acta 2009, 362, 1428-1434.
1. X. Su, L. Bromberg, V. Martis, F. Simeon, A. Huq, T. A. Hatton, ACS applied materials & interfaces 2017, 9, 11299-11306.
2. S. P. Desai, J. Ye, J. Zheng, M. S. Ferrandon, T. E. Webber, A. E. Platero-Prats, J. Duan, P. Garcia-Holley, D. M. Camaioni, K. W. Chapman, Journal of the American Chemical Society 2018, 140, 15309-15318.
3. T. Matsuzaki, Y. Iitaka, Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry 1969, 25, 1932-1938.
4. B. El Bali, M. Lachkar, R. Essehli, M. Dusek, J. Rohlicek, N. Mircescu, C. Haisch, Journal of Molecular Structure 2016, 1123, 30-34.