研究生: |
黃政瑋 Huang, Cheng-Wei |
---|---|
論文名稱: |
利用特殊插件磁鐵來改善電子儲存環之效能 Performance Improvement of an Electron Storage Ring by Using Special Insertion Devices |
指導教授: |
黃迪靖
Huang, Di-Jing 黃清鄉 Hwang, Ching-Shiang |
口試委員: |
李世元
Lee, Shyh-Yuan 張存續 Chang, Tsun-Hsu 周炳榮 Chou, Ping-Jung 劉偉強 Lau, Wai-Keung |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 135 |
中文關鍵詞: | 梯度場阻尼增頻磁鐵 、羅賓森增頻磁鐵 、光輝度 、束散度 、能量散度 |
外文關鍵詞: | Gradient damping wiggler, Robinson wiggler, Brilliance, Emittance, Energy spread |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
束散度(emittance)為判斷粒子儲存環特色的一個重要因素,也代表電子儲存環中電子束的量子撓動(quantum fluctuation)及輻射阻尼(radiation damping)的平衡值,而其與電子束的大小(beam size)及發散度(beam divergence)是呈現正相關性。因此本篇論文中分成兩個主要的探討重點,第一如何在現有的不穩定儲存環磁格中改善成為可穩定儲存的運轉模式;第二如何降低現有儲存環磁格中的束散度來改善同步輻射光的光亮度(brilliance)。第一個議題是解決在美國印第安那大學能量與物質探索中心(Center for Exploration of Energy and Matter)阿爾法儲存環(ALPHA storage ring)電子在橫向方向不穩定,當電子通過二極磁鐵時,入射角有12度的偏轉誤差(edge angle),造成阻尼分割係數(damping partition number)為負值,而導致電子在儲存環在橫向方向不穩定,因而無法順利儲存電子,為此議題,我們提出研發新型的梯度場增頻磁鐵(Gradient Damping wiggler,簡稱GDW)來解決此問題,同時也可藉由改變GDW的二極及四極磁場強度,來調整動量壓縮因子(momentum compaction factor)從-0.5至0.5; 另外在臺灣光子源(TPS)操作在低束散度的磁格模式(Low-emittance mode)下,其束散度大小約為1.6 nm rad,為了要使TPS的束散度能夠降低至1 nm rad以內,我們提出利用羅賓森增頻磁鐵(Robinson wiggler)的概念來降低束散度,因此可以提供更高亮度(Brilliance)的光源品質給用戶,經過射束動力的分析,我們改良原先的單週期(one-period)的羅賓森增頻磁鐵為多週期(multi-period)的磁鐵,並將此磁鐵安裝於7 m 的短直段上,預期可以把束散度減小到1 nm rad以內,但由於電子束的能量散度(Energy spread)會受羅賓森增頻磁鐵的影響而相對提高造成反效果,因此必需進行磁格的優化來得到最高的光亮度,並在安裝兩座羅賓森增頻磁鐵再利用現有的插件磁鐵 IU22進行光譜分析,其亮度可提高14.8~34.7%,在本篇論文中將會針對上述的議題做進一步的探討。
Emittance is an important factor to judge the property of the electron storage ring. The emittance of a storage ring is an equilibrium balance of quantum fluctuations and radiation damping; it is relative to the electron beam size and beam divergence, how to improve the emittance to satisfy the user’s requirement and to solve the unstable of the electron storage ring is the heart issue in the accelerator physics. Therefore, there are two main parts in this thesis. (1) We design a gradient damping wiggler to change the horizontal damping partition number in a storage ring and (2) we design Robinson wiggler to change the damping partition number in a third generation light source storage ring. The first one is the ALPHA storage ring at the Center for Exploration of Energy and Matter (CEEM) in Indiana University. The ALPHA storage ring is made of four dipole magnets with 12 degree edge angle. The horizontal damping partition number is negative for all storage ring without quadruples. We develop and manufacture the gradient damping wiggler (GDW) which can be used to change the damping partition number effectively, and to vary the momentum compaction factor from 0.5 to -0.5. The second part is to reduce the horizontal emittance of Low-emittance mode in Taiwan Photon Source (TPS) by using the Robinson wigglers. The horizontal emittance of TPS is about 1.6 nm rad. In order to decrease the emittance below 1 nm rad and provide high brilliance light source for user, we develop Robinson wigglers to be installed in the short straight sections. After beam dynamics analysis, we modified the traditional (one period) Robinson wiggler to multi-period Robinson wiggler (MRW), the emittance is reduced to less 1 nm rad, but it raises the energy spread of TPS. With 2 sets of MRWs, the photon brilliance from IU22 increases by 14.8% to 34.7%. The beam dynamics effect and the design concept of special gradient insertion device will be discussed in this thesis.
[1] J. D. Jackson, Classical Electrodynamics, Third Edition, John Wiley and Sons, (1998).
[2] S. Y. Lee, Accelerator Physics, Third Edition, World Scientific, 410-413 (2012).
[3] K. W. Robinson, Phys. Rev. vol. 111, number 2 (1958).
[4] M. Sands, SLAC-121 UC-28 (1970).
[5] S. Y. Lee, Accelerator Physics, Third Edition, World Scientific, 438 (2012).
[6] E. Wilson, An Introduction To Particle Accelerators, Oxford University Press. (2001).
[7] Helm, R. H. et al., IEEE Trans. Nucl. Sci, 20 (900), 43. (1973).
[8] S. Y. Lee, Accelerator Physics, Third Edition, World Scientific, 456-460 (2012).
[9] C. C. Kuo et al., IPAC10, Kyoto, Japan, MOOCMH01 (2010).
[10] Accelerator physics group, CERN, MAD website, [Online] available at: http://mad.web.cern.ch/mad/
[11] A. Streun, PSI, OPA website, [Online] available at:
https://ados.web.psi.ch/opa/
[12] S. Y. Lee et al., Rev. Sci. Instr. 78, 075107 (2007).
[13] CEEM website, [Online] available at: http://www.ceem.indiana.edu/
[14] X. Kang, Ph.D. thesis, Indiana University, (1998).
[15] E. J. Doskow, IPAC10, Kyoto, Japan, MOPEA082 (2010).
[16] Li, D., et al., PAC95, Vol. 1. IEEE,(1995).
[17] C. W. Huang et al., Applied Superconductivity, IEEE Transactions on 22.3 4100605-4100605 (2012).
[18] S. Russenchuck, CERN, 1211 Geneva 23, Switzerland.
[19] TOSCA 3D Code Information, [Online] available at:
http://www.cobham.com/about-cobham/aerospace-and-security/about-us/antenna-systems/kidlington/products/opera-3d.aspx
[20] RADIA code website, [Online] available at:
http://www.esrf.eu/Accelerators/Groups/InsertionDevices/Software/Radia
[21] C. S. Hwang, OCPA, Chi-Tou, Taiwan (2008).
[22] T. Tanabe et al., Bull. Inst. Chem. Res., Kyoto Univ., Vol. 52, No. 1 (1974).
[23] H. T. Edwards et al., FERMILAB-UPC-066 (1978).
[24] Edwards, John C., Process NMR Associates LLC, 87A Sand Pit Rd, Danbury CT 6810 (2003).
[25] J. R. Waldram, The Theory of Thermodynamics, Cambridge University Press (1985).
[26] F. Reif, Fundamentals of Statistical and Thermal Physics. McGraw-Hill (1965).
[27] B. Povh et al., Particles and Nuclei, Springer (2002).
[28] Fundamental Physical Constants, [Online] available at: http://physics.nist.gov/cuu/index.html
[29] Metrolab Technology website, [Online] available at: http://metrolab.com/
[30] C. S. Hwang et al., Rev. Sci. Instrum., vol. 65, no. 8, 2548–2555, (1994).
[31] E. Ramsden, Hall-effect sensors: theory and applications, Elsevier (2006).
[32] Group3 Technology website, [Online] available at:
http://www.group3technology.com/
[33] K. Wille, The Physics of Particle Accelerators: An Introduction, OXFORD, 108 (2001).
[34] C. C. Kuo et al., EPAC 06, Edinburgh, UK, 3445 (2006).
[35] C. S. Hwang, PAC07, Albuquerque, New Mexico, page 1082. (2007).
[36] S. Y. Lee, Accelerator Physics, Third Edition, World Scientific, 454 (2012).
[37] D. Attwood, Soft X-ray and Extreme Ultraviolet Radiation, Cambridge University Press (1999).
[38] E. Weisstein, Normal Distribution, MathWorld - A Wolfram Web Resource, [Online] available at: http://mathworld.wolfram.com/NormalDistribution.htm
(2011).
[39] K. Wille, The Physics of Particle Accelerators: An Introduction, OXFORD, 193 (2001).
[40] H. Wiedemann, Particle Accelerator Physics, Springer, 783 (2007).
[41] R. P. Walker, CERN accelerator school, CERN 98-04, 129 (1998)
[42] K. J. Kim, AIP conference proceedings 184, Vol. 1, 567 (1989)
[43] D. Einfeld et al., Journal of Synchrotron Radiation vol. 21, part 5. (2014).
[44] W. Guo et al. PAC09, Vancouver, Canada, BNL-82311-2009-CP (2009)
[45] K. W. Robinson, Phys. Rev. vol. 111, number 2 (1958)
[46] H. Abualrob et al., IPAC12, New Orleans, USA, MOPPP062 (2012)
[47] Li, Jingyi et al., IPAC13, Shanghai, China, TUPWO063 (2013).
[48] T. Goetsch et al., IPAC14, Dresden , Germany, WEPRO028 (2014)
[49] K. Halbach, Le Journal de Physique Colloques, 44.C1 (1983): C1-211.
[50] M. H. Wang et al., Review of scientific instruments, 78.5 (2007): 055109.
[51] M. S. Chiu et al., IPAC10, Kyoto, Japan, THPE030 (2010).
[52] T. Tanaka, RIKEN SPring-8 Center, SPECTRA website, [Online] available at: http://radiant.harima.riken.go.jp/spectra/
[53] D. Newton et al., US particle accelerator school, [Online] available at:
https://uspas.fnal.gov/materials/13CSU/Lecture5.pdf
[54] A. Streun, SLS-TME-TA-1997-0018 (1997).
[55] TPS Design Handbook (2010).
[56] Y. Baconnier et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 234.2 (1985): 244-252.
[57] C. W. Huang et al., IPAC14, Dresden , Germany, WEPRO064 (2014)
[58] NEOMAX MATERIALS, [Online] available at:
http://www.neomax-materials.co.jp/eng/.
[59] J. Safranek et al. Physical Review Special Topics-Accelerators and Beams 5.1 (2002): 010701.