研究生: |
方際勛 Fang, Chi-Hsun |
---|---|
論文名稱: |
以雷達剩餘壽命預測相關文獻為基礎之文件重點內容整合模式 A Key Information Integration Method Based on Radar RUL literature |
指導教授: |
侯建良
Hou, Jiang-Liang |
口試委員: |
楊士霆
Yang, Shih Ting 吳士榤 Wu, Shin Jie |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 288 |
中文關鍵詞: | 文獻主題判定 、關鍵資訊擷取 |
外文關鍵詞: | Remaining Useful Life (RUL |
相關次數: | 點閱:53 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當雷達系統相關研究人員欲開發一剩餘壽命預測系統時,其往往需透過網路尋找雷達剩餘壽命預測相關文獻,以從中取得開發系統所需之關鍵資訊。然而,網際網路上之搜尋結果大多為以剩餘壽命預測研究主題之相關文獻或以雷達系統為研究對象之相關文獻,以上兩種類型之文獻皆不符合雷達系統相關研究人員所需的雷達剩餘壽命預測相關文獻。此外,取得雷達剩餘壽命預測相關文獻後,雷達系統相關研究人員仍需花費大量時間逐一閱讀文獻內容,以取得雷達剩餘壽命預測相關文獻中之重點內容。因此,本研究乃規劃發展一套「以雷達剩餘壽命預測相關文獻為基礎之文件重點內容整合模式」,以協助雷達系統相關研究人員快速獲取雷達剩餘壽命預測相關文獻及理解雷達剩餘壽命預測相關文獻之重點內容。
本研究所發展之「以雷達剩餘壽命預測相關文獻為基礎之文件重點內容整合模式」乃先分析多篇以剩餘壽命預測為研究主題之相關文獻及以雷達為研究對象之相關文獻,以釐清可代表以上兩類文獻主題的主題關鍵特徵及可代表剩餘壽命預測相關文獻內容之內容關鍵特徵,並根據各關鍵特徵之表達方式建立其所對應之相關詞庫。之後,根據前置階段之分析結果本研究乃發展「文獻主題判定與剩餘壽命預測關鍵資訊擷取」方法論,此方法論主要包含「文獻主題判定」、「剩餘壽命預測關鍵資訊擷取及彙整」兩大階段。於「文獻主題判定」階段,本研究乃取得雷達系統相關研究人員所提供之目標文獻,並根據目標文獻標題的關鍵字有無、目標文獻摘要中之關鍵特徵出現比例及目標文獻內文的關鍵字詞有無判定此目標文獻是否為雷達剩餘壽命預測相關文獻。之後,於「剩餘壽命預測關鍵資訊擷取及彙整」階段,本研究乃將前一步驟取得之雷達剩餘壽命預測相關文獻之內文與前置階段所建立之各項詞庫進行比對,再根據前置階段所訂定之各項剩餘壽命預測關鍵特徵的表達方式擷取雷達剩餘壽命預測相關文獻中之剩餘壽命預測關鍵資訊。最後,本階段乃將所擷取之剩餘壽命預測關鍵內容以表格之方式彙整呈現,以利雷達相關研究人員快速理解一雷達剩餘壽命預測相關文獻中之關鍵內容。
When radar system researchers aim to develop a radar Remaining Useful Life (RUL) prediction system, they often need to search the internet for radar RUL prediction related literature to obtain the key information required for system development. However, the search results on the internet mostly do not provide the literature that radar system researchers need. Furthermore, even after obtaining the radar RUL prediction related literature, radar system researchers still need to spend a lot of time reading through each document to extract the key content related to RUL prediction of radar system. Therefore, this research develops a method to assist radar system researchers acquire radar RUL prediction related literature and understanding the key content within such literature quickly and easily. The proposed method first obtains the radar RUL literature by using a topic determination approach. Second, the method extracts the key information related to radar RUL prediction from the literature which obtained from the previous step. Finally, the extracted key content is organized and presented in a tabular format. By utilizing this table, radar system researchers can efficiently obtain the radar RUL literature and comprehend the key information within a short period of time.
1.Abainia, K., Ouamour, S. and Sayoud, H., 2015, “Topic Identification of Arabic Noisy Texts Based on KNN,” 2015 International Conference on Information and Communication Technology Research (ICTRC), pp. 92-95.
2.Baghdadi, H. S. and Bali, R. M., 2011, “An Automatic Topic Identification Algorithm,” Journal of Computer Science, pp. 1363-1367.
3.Chakraborty, B. and Hashimoto, T., 2010, “Topic Extraction from Messages in Social Computing Services: Determining the Number of Topic Clusters,” 2010 IEEE Fourth International Conference on Semantic Computing, pp. 232-235.
4.Chen, L. P. and Song, M. Q., 2011, “Study on Hot Topics Identification and Key Issues in On-line News about Emergency Events,” 2011 International Conference on Advanced Intelligence and Awareness Internet (AIAI 2011), pp. 250-254.
5.Dong, X., Weng, X. and Ling, Y., 2022, “Information Extraction and Analysis of Chinese Traffic News,” 2022 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics), pp. 518-524.
6.Du, X., Duan, Y., and Huang, W., 20211, “Attribute Information Extracting Method for Air Quality Assessment of Buildings,” 2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC), pp. 483-488.
7.El-Halees, A. and Elhaj, M., 2021, “Extracting Information from Medical Reports,” 2021 Palestinian International Conference on Information and Communication Technology (PICICT), pp. 92-96.
8.Guo, Y., He, P., Wu, H., Zhang, J., Wang, Z., Jiang, X. and Liu, J., 2015, “MKLS-SVR Based Remaining Useful Life Prediction for Avionics,” 2015 12th IEEE International Conference on Electronic Measurement & Instruments, ICEMI, pp. 223-227.
9.Hassan, M. M., Karray, F. and Kamel, M. S., 2012, “Automatic Document Topic Identification Using Wikipedia Hierarchical Ontology,” 2012 11th International Conference on Information Science, Signal Processing and Their Applications (ISSPA), pp. 237-242.
10.Hou, X., Yang J., Deng B., Chang, C., Zhang, Y. and Xu J., 2018, “A Remaining Useful Life Prediction Method for T/R Module Based on Index Similarity,” 2018 Prognostics and System Health Management Conference, pp.925-931.
11.Jain, A. K. and Lad, B. K., 2015, “Predicting Remaining Useful Life of High Speed Milling Cutters Based on Artificial Neural Network,” 2015 International Conference on Robotics, Automation, Control and Embedded Systems, pp.1-6.
12.Liu, C. L., Sun, J. R., Zhao, K. and Wang, K., 2021, “Bidirectional LSTM RNN for precise predict remaining useful life of supercapacitors,”2021 IEEE International Conference on Electrical Engineering and Mechatronics Technology, ICEEMT, pp.56-59.
13.Liu, Q. Q., Zhang J. Y. and Chen, B., 2017, “Study on Life Prediction of Radar Based on Non-Parametric Regression Model,” 2017 13th IEEE International Conference on Electronic Measurement & Instruments, ICEMI, pp.586-590.
14.Liu, X., Deng, J., Yang, J. and Li, Y., 2018, “Research of a Fault Prediction Method of the Electronic Equipment Based on ARMA-Elman Neural Network Model,” 2018 Eighth International Conference on Instrumentation & Measurement, Computer, Communication and Control, IMCCC, pp.1827-1830.
15.Mun, J. and Jeong, J., 2020, “Design and Analysis of RUL Prediction Algorithm Based on CABLSTM for CNC Machine Tools,” 2020 7th International Conference on Soft Computing & Machine Intelligence, ISCMI, pp.83-87.
16.Qiao, J., Liu, X. and Chen, Z., 2020, “Prediction of the Remaining Useful Life of Lithium-Lon Batteries Based on Empirical Mode Decomposition and Deep Neural Networks,” IEEE Access, Vol. 8, pp. 42760-42767.
17.Sohaidan, F. N. B., Muneer, A. and Taib, S. M., 2021, “Remaining Useful Life Prediction of Turbofan Engine using Long-Short Term Memory,” 2021 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies, pp.1-6.
18.Xu, J. P., Wang, Y. S. and Xu, L., 2014, “PHM-Oriented Integrated Fusion Prognostics for Aircraft Engines Based on Sensor Data,” IEEE Sensors Journal, Vol. 14, No. 4, pp.1124-1132.
19.Yang, J., Yang, X., Li, R. and Luo, M., 2021, “A Multi-Task Information Extraction Framework for Bridge Inspection Based on Joint Neural Networks,” 2021 7th International Conference on Systems and Informatics (ICSAI), pp. 1-6.
20.Yao, R., Li, Q., Lo-Ciganic, W. H. and Zeng, D. D., 2019, “A Prior Knowledge Based Neural Attention Model for Opioid Topic Identification,” 2019 IEEE International Conference on Intelligence and Security Informatics (ISI), pp.215-217.
21.Yuan, D., Yang, X., Nong, X. and Fu, H., 2012, “ Extracting Text Information from Webpage Based on Block and Tag-Function,” IET International Conference on Information Science and Control Engineering 2012 (ICISCE 2012), pp. 1-4.
22.Zhai, Y. and Fang S., 2020, “A Degradation Fault Prognostic Method of Radar Transmitter Combining Multivariate Long Short-Term Memory Network and Multivariate Gaussian Distribution,” IEEE Access, Vol. 8, pp.199781-199791.
23.Zhang, Y., Peng, Y., Pang, J. and Liu, D., 2016, “Weighted Bagging Gaussian Process Regression to Predict Remaining Useful Life of Electro-Mechanical Actuator, ”2016 Prognostics and System Health Management Conference, pp.1-6.
24.Zhu, K., Zhang, C., Lu, N. and Jiang, B., 2019, “Data-driven RUL Prediction of High-speed Railway Traction System Based on Similarity of Degradation Feature,” 2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes, pp.292-297.
25.Zhu, W., Bai, S., Zhang, B., Xu, W. and Wei, D., 2017, “An Information Extraction Method for Digitized Textbooks of Traditional Chinese Medicine,” 2010 10th IEEE International Conference on Computer and Information Technology, pp. 1645-1648.
26.Zhuang, C., Zhou, Y., Ge, J., Li, Z., Li, C., Zhou, X. and Luo, B., 2017, “Information Extraction from Chinese Judgment Documents,” 2017 14th Web Information Systems and Applications Conference (WISA), pp. 240-244.
27.王玉松,2011,基於SVM的雷達故障預診斷技術研究,計算機科學與應用,pp. 20-23。