研究生: |
黃耀新 |
---|---|
論文名稱: |
利用往復式擠型法及高鋁含量改善AZ系列鎂合金超塑性與成型性之研究 |
指導教授: | 葉均蔚 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 125 |
中文關鍵詞: | 鎂合金 、往復式擠型 、超塑性 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用擠製高鋁含量AZ鎂合金Mg-xAl-1Zn (x=12,13,14,15,16) 研究往復式擠型對微結構、超塑性及成型性的影響。結果顯示本系列合金鑄造態微結構為樹枝晶相及共晶相所構成,其共晶相由α基地相及β相(Mg17Al12)所組成。而鑄錠經往復式擠型,可得到晶粒細化與Mg17Al12均勻散佈的效果,並使合金硬度較鑄造態大為提高。增加擠型次數,更能使β相的散佈更均勻,而隨著鋁含量增加,提升β相鎖住α相晶界的效果,使α相在擠型過程中的晶粒更為細化。
超塑性試驗顯示,在300℃的條件下,經往復式擠型十次的Al 14,15及16 wt% AZ合金皆有超塑性, 其中以15wt%具有最佳超塑性。
成型性試驗結果顯示與材料的原始厚度和應變速率有關。厚度增加,不受模具的摩擦力限制的自由變形區越大,鍛壓的效果越好。應變速率下降、流應力下降,在沖壓過程中與材料接觸的時間愈長,因此對材料進行低流應力塑性變形的時間也愈長,使材料鍛壓的效果提高。而鋁含量對成型性的影響不大,應歸因於本實驗沖壓應變速率皆在100以上,使晶界滑移機制所產生的超塑性無法發揮所致。
1. K. Kubota, M. Mabuchi, and K. Higashi, “Processing and Mechanical Properties of Fine-Grained Magnesium Alloys”, J. Mater. Sci., Vol. 34, 1999, pp. 2255-2262
2. O. D. Sherby and J. Wadsworth, “ Development and Characterization of Fine-Grain Superplastic Materials” in Deformation, Processing, and Structure, ASM, 1982, pp. 355-389
3. A. Uoya and T. Shibata, J. Mater. Res., 11(1996),pp. 2737.
4. G. H. Strijbos and W. H. Kool, “Superplastic Behaviour of a Rapidly Solidified 7475 Aluminum Alloy”, Mater. Sci. Eng. A, Vol. 194, 1995, pp. 129-136.
5. M. Mabuchi, T. Imai and K. Higashi, “Production of Superplastic Aluminum Composites Reinforced with Si3N4 by Powder Metallurgy”, J. Mater. Sci., Vol. 28, 1993, pp. 6582-6586.
6. K. Higashi, T. G. Nieh, M. Mabuchi and J. Wadsworth, “Effect of Liquid Phases on the Tensile Elongation of Superplastic Aluminum Alloys and Composites”, Scripta Metall., Vol. 32, 1994, pp. 1079-1084.
7. V. M. Segal, “Materials Processing by Simple Shear”, Mater. Sci. Eng. A, Vol. 197, 1995, pp. 157-164.
8. S. Ferrase, V. M. Segal, K. T. Hartwig and R. E. Gorforth, “Microstructure and Properties of Copper and Aluminum Alloy 3003 Heavily Worked by Equal Channel Angular Extrusion”, Metall. Mater. Trans. A., Vol. 28A, 1997, pp. 1047-1057.
9. 柯長廷,"往復式擠製Zn-Al合金超塑性之研究",國立清華大學材料科學工程研究所碩士論文,1997.
10. 李士瑋,"往復式擠型法製成微米級晶粒5083合金微結構及性質之探討",國立清華大學材料科學工程研究所碩士論文,1998.
11. 龔仁傑,"往復式擠型法回收鎂合金廢料之研究",國立清華大學材料科學工程研究所碩士論文,2001.
12. 劉家穎,"利用往復式擠型法擠製超塑性AS21鎂合金之研究",國立清華大學材料科學工程研究所碩士論文,2001.
13. 張榮桂,"利用往復式製作超塑性AZ91鎂合金之研究",國立清華大學材料科學工程研究所碩士論文,2000.
14. M. M. Avedesian and H. BakerASM: Magnesium and magnesium alloys, Specialty handbook, 1999.
15. D. Daloz, G. Michot and P. Steinmetz, Inter. J. Rapid Solid., V.9 (1996),pp. 171-186.
16. S. W. Lee, H. Y. Wang, Y. L. Chen, J. W. Yeh and C. F. Yang, “An Mg-Al-Zn Alloy with Very High Specific Strength and Superior High-Strain-Rate Superplasticity Processed by Reciprocating extrusion Method”, Advanced Engineering Materials, 2004, 6, No. 12, pp. 948-952.
17. M. Avedesian, H. Baker, “ASM Specialty Handbook: Magnesium and Magnesium Alloys”,1999,pp. 7-10&pp. 258-262.
18. L. M. Pidgeon, J.C. Mathes, N. E. Woldman, J. V. Winkler, and W. S. Loose, “Magnesium”,Cleveland, 1946.
19. G. V. Raynor, “The Physical Metallurgy of Magnesium and Its Alloys”, New York,Pergamon Press, 1959.
20. http://www.chb.com.tw/news/html/industry_report/09111/09111_magnesium.html.
21. 陳錦修,“鎂合金在汽車工業之應用”,工業材料186期,91年2月,pp. 148-152.
22. F. H. Froes, D. Eliezer, and E. Aghion, “The Science, Technology, and Applications of Magnesium”, JOM. September, 1998, pp. 30-34.
23. 曾寶貞,“壓鑄用鎂合金的特性與動向”,工業材料156期,88年12月,pp. 153-159.
24. “Properties and Selection: Nonferrous Alloys and Special-Propose Materials”, Metals Handbook, ASM.Vol. 2, tenth edition, pp.457-458
25. 邱垂泓,“金屬半固態至程技術簡介”工業材料164期, 89年8月,pp.158-160.
26. 曾寶貞 “鎂合金新鍛造法登場”,工業材料158期,89年2月,pp.150-151.
27. G. E. Dieter, "Mechanical Metallurgy", London,UK,McGraw-Hill , Metric edition, 1988.
28. H. Proffit.,“Magnesium and Magnesium Alloys”,ASM Handbook,Vol. 2, pp. 798-799.
29. H. P. Godard, W. B. Jepson, M. R. Bothwell, and R. L. Kane, “The corrosion of light metals”, New York ,Wiley,1967.
30. G. H. Strijbos and W. H. Kool, “Superplastic Deformation”, Mater. Sci. Eng. A, Vol. 137, 1991, pp. 1-11.
31. K. Higashi, “ Positive Exponent Superplasticity in Advanced Aluminum Alloys with Nano or Near-Nano Scale Grained Structures”, Mater. Sci. Eng. A, Vol. 166, 1993, pp. 109-118.
32. M. Furukawa, Z. Horita, M. Nemoto, R. Z. Valiev and T. G. Langdon, “Fabrication of Submicrometer-Grain Zn-22 % Al by Torsion Straining”, J. Mater. Res., Vol. 11, 1996, pp. 2128-2130.
33. M. Furukawa, Y. Ma, Z. Horita, M. Nemoto, R. Z. Valiev and T. G. Langdon, “Microstructure Characteristics and Superplastic Ductility in a Zn-22 % Al Alloy with Submicrometer Grain Size”, Mater. Sci. Eng. A, Vol. 241, 1998, pp. 122-128.
34. T. G. Langdon, M. Furukawa, Z. Horita and M. Nemoto, “Using Intense Plastic Straining for High-Strain-Rate Superplasticity”, JOM, June, 1998, pp. 41-45.
35. J. W. Yeh, S. Y. Yuan and C. H. Peng, “A Reciprocating Extrusion Process for Producing Hypereutectic Al-20 wt. Percent Si Wrought Alloys”, Mater. Sci. Eng. A, Vol. 252, 1998, pp. 212-221.
36. S. H. Yuan, J. W. Yeh and C. H. Tsau, “Improved Microstructure and Mechanical Properties of 2024 Aluminum Alloy Produced by Reciprocating Extrusion Method”, Mater. Trans., JIM, Vol. 40, 1999, pp. 233-241.
37. D. Lee, “The Nature of Superplastic Deformation in the Mg-Al Eutectic” Acta Met., 1969, Vol.17, pp.1057-1069
38. W. Rosenhain, J. L. Haughton, and K. E. Bingham: J. Inst. Metals, 1920, Vol. 23, p. 261
39. C. E. Pearson: J. Inst. Metals, 1934, Vol. 54, p. 111.
40. A. A. Presnyakov: Sverkhplastichnost Metallov I Splavov, publ. ‘Nauka,’ Alma Ata, U. S. S. R., 1969
41. E. E. Underwood: J. Metals, Vol. 14, December 1962, p. 914.
42. W. A. Backofen, I. R. Turner, and D. H. Avery, “Superplastic in an Al-Zn Alloy” Trans. ASM, Vol. 57, 1964, p.980.
43. M. M. Ahmed and T. G. Langdon, “Exceptional Ductility in the Superplastic Pb-62 Pct Sn Eutectic” Metall Trans. A, Vol. 8A, 1977, pp. 1832-1835
44. J. W. Edington, “Microstructure Aspects Superplastic”, Metall. Trans. A, Vol. 13A, 1982, pp. 703-715
45. 黃元璋,“往復式擠製Zn-22% Al合金高速超塑性及射出成型性之研究”,國立清華大學材料科學工程研究所碩士論文,1997。
46. R. Grimes, C. Baker, M. J. Stowell, and B. M. Watts: Aluminum, Vol. 51, 1975, p. 720.
47. A. K. Mukherjee, “ Superplasticity in Metals, Ceramics and Inter-Metallics” in Superplastic Forming of a Symposium, ASM, 1985, pp. 408-460
48. A. K. Gghosh, and C. H. Hamilton, Mechanical Behavior and Hardening Characteristic of a Superplastic Ti-6Al-4V Alloy, Metall, Trans. A, Vol.10A, June, 1979, pp. 699-706
49. O. A. Ruano, J. Wadsworth and O. D. Sherby, “ Enhanced Densification of White Cast Iron Powders by Cyclic Phase Transformations Under Stress”, Metall. Trans., Vol. 13A, 1982, pp. 355-361
50. R. C. Lobb, E. C. Sykes and R. H. Johnson, “ Internal Stress Superplasticity in Some Materials”, Metal Sci., Vol. 19, 1972, p. 6
51. 林兆榮,金屬超塑性成型原理及應用,航空工業出版社,1990
52. R. E. Reed-Hill, "Physical Metallurgy Principles", 3rd Edition, PWS Pub. Com., 1994
53. T. G. Nieh, C. H. Henshall and J. Wadsworth, “ Creep-Rupture of a Silicon-Carbide Reinforced Aluminum Composite”, Scripta Metall., Vol. 18, 1984, pp. 1405-1508
54. T. G. Nieh, P. S. Gilman and J. Wadsworth, Metal Sci., Vol. 19, 1985, p. 1375
55. O. A. Ruano, J. Wadsworth and O. D. Sherby, “ Deformation Mechanisms in an Austenitic Stainless Steel (25Cr-20Ni) at Elevated Tem-perature”, J. Mater. Sci., Vol. 20, 1985, pp. 3735-3744
56. K. Matsuki, H. Sugahara, T. Aida, and N. Takatsuji, “Effect of Microstructure Refinement on High Strain Rate Superplastic in a PM 2024Al-Fe-Ni Alloy”, Materials Transactions, JIM, Vol. 40, No8 1999, p. 737
57. N. Chandra, S. C. Rama and Z. Chen, “Critical Issue in the Industrial Application of SPF-Process Modeling and Design Practices”, Materials Transactions, JIM, Vol. 40,No. 8 1999, p. 723.
58. A. K. Ghosh and C.H. Hamilton, “Influences of Material Parameters and Microstructure on Superplastic Forming”, Metall. Trans. A, Vol. 13A, 1982, pp. 733-743
59. A. Arieli and A. Mukherjee, “The Rate-Controlling Deformation Mechanisms in Superplasticity - A Critical Assessment”, Metall. Trans. A, Vol. 13A, 1982, pp. 717-732
60. T. R. Bieler and A. K. Mukherjee, “ The High-Strain-Rate Superplastic Deformation Mechanism of Mechanically Alloyed Aluminum-IN 90211”, Mater. Sci. Eng., A128, 1990, pp. 171-182
61. 吳易座,“Ti3Al-Nb鈦鋁鈮介金屬合金之超塑性研究”,國立台灣大學材料科學與工程科學研究所博士論文,1996
62. M. Mabuchi, H. Iwasaki, K. Yanase and K. Higashi, ”Low Temperature Superplastic in an AZ91 Magnesium Alloy Processed by ECAE”, Scripta Mater., Vol. 36, No.6, 1997, pp. 681-686
63. H. Watanabe, T. Mukai, M. Kohzu, S. Tanabe and K. Higashi, “Effect of Temperature and Grain Size on the Dominant Diffusion Process for Superplastic Flow in an AZ61 Magnesium Alloy”, Acta Mater. Vol. 47, No. 14, 1999, pp. 3753-3758
64. H. Watanabe and T. Mukai, “Superplastic in a ZK60 Magnesium Alloy at Low Temperatures”, Scripta Mater. Vol. 40, No. 4, 1999, pp. 477-484,
65. H. Watanabe, T. Mukai, M. Mabuchi and K. Higashi, “High-Strain-Rate Superplastic at Low Temperature in a ZK61 Magnesium Alloy Produced by Powder Metallurgy”, Scripta Mater., Vol. 41. No. 2. 1999, p. 209
66. R. Z. Valiev, N. A. Krasilnikov and N. K. Tsenev, “Plastic Deformation of Alloys with Submicron-Grained Structure”, Mater. Sci. Eng., A137. 1991, pp. 35-40
67. A. Uoya, T. Shibata, K. Higashi, A. Inoue and T. Masumoto, “Superplastic Deformation Characteristics and Constitution Equation in Rapidly Solidified Mg-Al-Ga Alloy”, Journal of Materials Research, Vol. 11, No. 11, 1996, pp. 2731-2737
68. T. Mohri, M. Mabuchi, N. Saito, M. Nakamura, “Microstructure and Properties of a Mg-4Y-3RE Alloy Processed by Thermo-mechanical Treatment”, Mater. Sci. Eng., A257, 1998, pp. 287-294
69. S. Celotto, “TEM Study of Continuous Precipitation in Mg-9wt%Al-1wt%Zn Alloy”, Acta mater 48(2000)1775-1787
70. 李士瑋,"以往復式擠型法改善鋁合金/鎂合金機械性質及超塑行為之研究",國立清華大學材料科學工程研究所博士論文,2006.
71. 劉正, 張奎, 曾小勤,”鎂基輕質合金理論基礎及其應用”,機械工業出版社,2002年9月