簡易檢索 / 詳目顯示

研究生: 黃耀新
論文名稱: 利用往復式擠型法及高鋁含量改善AZ系列鎂合金超塑性與成型性之研究
指導教授: 葉均蔚
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 125
中文關鍵詞: 鎂合金往復式擠型超塑性
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用擠製高鋁含量AZ鎂合金Mg-xAl-1Zn (x=12,13,14,15,16) 研究往復式擠型對微結構、超塑性及成型性的影響。結果顯示本系列合金鑄造態微結構為樹枝晶相及共晶相所構成,其共晶相由α基地相及β相(Mg17Al12)所組成。而鑄錠經往復式擠型,可得到晶粒細化與Mg17Al12均勻散佈的效果,並使合金硬度較鑄造態大為提高。增加擠型次數,更能使β相的散佈更均勻,而隨著鋁含量增加,提升β相鎖住α相晶界的效果,使α相在擠型過程中的晶粒更為細化。
    超塑性試驗顯示,在300℃的條件下,經往復式擠型十次的Al 14,15及16 wt% AZ合金皆有超塑性, 其中以15wt%具有最佳超塑性。
    成型性試驗結果顯示與材料的原始厚度和應變速率有關。厚度增加,不受模具的摩擦力限制的自由變形區越大,鍛壓的效果越好。應變速率下降、流應力下降,在沖壓過程中與材料接觸的時間愈長,因此對材料進行低流應力塑性變形的時間也愈長,使材料鍛壓的效果提高。而鋁含量對成型性的影響不大,應歸因於本實驗沖壓應變速率皆在100以上,使晶界滑移機制所產生的超塑性無法發揮所致。


    誌謝 I 摘要 III 目錄 IV 圖目錄 VIII 表目錄 XII 壹、前言 1 貳、文獻回顧 4 2-1 鎂合金特性與應用 4 2-1-1 鎂合金的特性 4 2-1-2 鎂合金的應用 6 2-1-3 鎂合金的加工方法 8 2-1-3-1 鑄造法( casting) 8 2-1-3-2 鍛造法(forging) 9 2-2 鎂合金強化機制 13 2-2-1 材料強化原理 13 2-3 添加元素對鎂合金的影響 15 2-4 細化晶粒的方法 17 2-4-1 機械合金(mechanically alloying, MA) 19 2-4-2 熱機處理(thermo-mechanical processing, TMP) 19 2-4-3 快速凝固(rapid solidification processing, RSP) 19 2-4-4 物理氣相沈積(physical vapor deposition, PVD) 20 2-4-5 扭轉應變(torsion straining) 20 2-4-6 等通道轉角擠型(equal channel angular extrusion, ECAE) 20 2-4-7 往復式擠型(reciprocating extrusion) 25 2-5 超塑性材料的介紹 26 2-5-1 超塑性的定義 26 2-5-2 金屬超塑性的發展 28 2-5-3 超塑性的分類 29 2-5-4 高速超塑性之發展 30 2-6 超塑性變形的力學基礎 32 2-7 影響超塑性變形的因素 34 2-7-1 變形溫度的影響 34 2-7-2 晶粒尺寸及形狀的影響 38 2-7-3 應變速率的影響 39 2-7-4 兩相組織的影響 39 2-7-5 應力狀態的影響 40 2-8 超塑性變形機構 40 2-8-1 單一晶粒晶界滑移 46 2-8-2 共同晶界滑移 46 2-9 本研究之目的 53 參、實驗步驟 55 3-1材料準備及成分分析 55 3-2往復式擠型 55 3-3金相觀察 56 3-4硬度測量 57 3-5常溫拉伸試驗 57 3-6 超塑性試驗 57 3-7 沖壓成型試驗 58 肆、結果與討論 67 4-1 往復擠型對微結構的影響 67 4-1-1不同鋁含量鑄造狀態的微結構 67 4-1-2 擠型對微結構的影響 67 4-2 擠型對鎂合金機械性質的影響 69 4-2-1不同成份鎂合金的擠型後的硬度 69 4-2-2固溶及時效處理對擠型後合金微結構及性質的影響 69 4-2-3 滾軋對擠型後合金微結構及性質的影響 70 4-2-4擠型後合金的超塑性 72 4-3 成型性試驗 73 4-3-1 鋁含量及溫度對成型性的影響 73 4-3-2 不同成型速率對成型性的影響 76 伍、結論 117 陸、參考文獻 119

    1. K. Kubota, M. Mabuchi, and K. Higashi, “Processing and Mechanical Properties of Fine-Grained Magnesium Alloys”, J. Mater. Sci., Vol. 34, 1999, pp. 2255-2262
    2. O. D. Sherby and J. Wadsworth, “ Development and Characterization of Fine-Grain Superplastic Materials” in Deformation, Processing, and Structure, ASM, 1982, pp. 355-389
    3. A. Uoya and T. Shibata, J. Mater. Res., 11(1996),pp. 2737.
    4. G. H. Strijbos and W. H. Kool, “Superplastic Behaviour of a Rapidly Solidified 7475 Aluminum Alloy”, Mater. Sci. Eng. A, Vol. 194, 1995, pp. 129-136.
    5. M. Mabuchi, T. Imai and K. Higashi, “Production of Superplastic Aluminum Composites Reinforced with Si3N4 by Powder Metallurgy”, J. Mater. Sci., Vol. 28, 1993, pp. 6582-6586.
    6. K. Higashi, T. G. Nieh, M. Mabuchi and J. Wadsworth, “Effect of Liquid Phases on the Tensile Elongation of Superplastic Aluminum Alloys and Composites”, Scripta Metall., Vol. 32, 1994, pp. 1079-1084.
    7. V. M. Segal, “Materials Processing by Simple Shear”, Mater. Sci. Eng. A, Vol. 197, 1995, pp. 157-164.
    8. S. Ferrase, V. M. Segal, K. T. Hartwig and R. E. Gorforth, “Microstructure and Properties of Copper and Aluminum Alloy 3003 Heavily Worked by Equal Channel Angular Extrusion”, Metall. Mater. Trans. A., Vol. 28A, 1997, pp. 1047-1057.
    9. 柯長廷,"往復式擠製Zn-Al合金超塑性之研究",國立清華大學材料科學工程研究所碩士論文,1997.
    10. 李士瑋,"往復式擠型法製成微米級晶粒5083合金微結構及性質之探討",國立清華大學材料科學工程研究所碩士論文,1998.
    11. 龔仁傑,"往復式擠型法回收鎂合金廢料之研究",國立清華大學材料科學工程研究所碩士論文,2001.
    12. 劉家穎,"利用往復式擠型法擠製超塑性AS21鎂合金之研究",國立清華大學材料科學工程研究所碩士論文,2001.
    13. 張榮桂,"利用往復式製作超塑性AZ91鎂合金之研究",國立清華大學材料科學工程研究所碩士論文,2000.
    14. M. M. Avedesian and H. BakerASM: Magnesium and magnesium alloys, Specialty handbook, 1999.
    15. D. Daloz, G. Michot and P. Steinmetz, Inter. J. Rapid Solid., V.9 (1996),pp. 171-186.
    16. S. W. Lee, H. Y. Wang, Y. L. Chen, J. W. Yeh and C. F. Yang, “An Mg-Al-Zn Alloy with Very High Specific Strength and Superior High-Strain-Rate Superplasticity Processed by Reciprocating extrusion Method”, Advanced Engineering Materials, 2004, 6, No. 12, pp. 948-952.
    17. M. Avedesian, H. Baker, “ASM Specialty Handbook: Magnesium and Magnesium Alloys”,1999,pp. 7-10&pp. 258-262.
    18. L. M. Pidgeon, J.C. Mathes, N. E. Woldman, J. V. Winkler, and W. S. Loose, “Magnesium”,Cleveland, 1946.
    19. G. V. Raynor, “The Physical Metallurgy of Magnesium and Its Alloys”, New York,Pergamon Press, 1959.
    20. http://www.chb.com.tw/news/html/industry_report/09111/09111_magnesium.html.
    21. 陳錦修,“鎂合金在汽車工業之應用”,工業材料186期,91年2月,pp. 148-152.
    22. F. H. Froes, D. Eliezer, and E. Aghion, “The Science, Technology, and Applications of Magnesium”, JOM. September, 1998, pp. 30-34.
    23. 曾寶貞,“壓鑄用鎂合金的特性與動向”,工業材料156期,88年12月,pp. 153-159.
    24. “Properties and Selection: Nonferrous Alloys and Special-Propose Materials”, Metals Handbook, ASM.Vol. 2, tenth edition, pp.457-458
    25. 邱垂泓,“金屬半固態至程技術簡介”工業材料164期, 89年8月,pp.158-160.
    26. 曾寶貞 “鎂合金新鍛造法登場”,工業材料158期,89年2月,pp.150-151.
    27. G. E. Dieter, "Mechanical Metallurgy", London,UK,McGraw-Hill , Metric edition, 1988.
    28. H. Proffit.,“Magnesium and Magnesium Alloys”,ASM Handbook,Vol. 2, pp. 798-799.
    29. H. P. Godard, W. B. Jepson, M. R. Bothwell, and R. L. Kane, “The corrosion of light metals”, New York ,Wiley,1967.
    30. G. H. Strijbos and W. H. Kool, “Superplastic Deformation”, Mater. Sci. Eng. A, Vol. 137, 1991, pp. 1-11.
    31. K. Higashi, “ Positive Exponent Superplasticity in Advanced Aluminum Alloys with Nano or Near-Nano Scale Grained Structures”, Mater. Sci. Eng. A, Vol. 166, 1993, pp. 109-118.
    32. M. Furukawa, Z. Horita, M. Nemoto, R. Z. Valiev and T. G. Langdon, “Fabrication of Submicrometer-Grain Zn-22 % Al by Torsion Straining”, J. Mater. Res., Vol. 11, 1996, pp. 2128-2130.
    33. M. Furukawa, Y. Ma, Z. Horita, M. Nemoto, R. Z. Valiev and T. G. Langdon, “Microstructure Characteristics and Superplastic Ductility in a Zn-22 % Al Alloy with Submicrometer Grain Size”, Mater. Sci. Eng. A, Vol. 241, 1998, pp. 122-128.
    34. T. G. Langdon, M. Furukawa, Z. Horita and M. Nemoto, “Using Intense Plastic Straining for High-Strain-Rate Superplasticity”, JOM, June, 1998, pp. 41-45.
    35. J. W. Yeh, S. Y. Yuan and C. H. Peng, “A Reciprocating Extrusion Process for Producing Hypereutectic Al-20 wt. Percent Si Wrought Alloys”, Mater. Sci. Eng. A, Vol. 252, 1998, pp. 212-221.
    36. S. H. Yuan, J. W. Yeh and C. H. Tsau, “Improved Microstructure and Mechanical Properties of 2024 Aluminum Alloy Produced by Reciprocating Extrusion Method”, Mater. Trans., JIM, Vol. 40, 1999, pp. 233-241.
    37. D. Lee, “The Nature of Superplastic Deformation in the Mg-Al Eutectic” Acta Met., 1969, Vol.17, pp.1057-1069
    38. W. Rosenhain, J. L. Haughton, and K. E. Bingham: J. Inst. Metals, 1920, Vol. 23, p. 261
    39. C. E. Pearson: J. Inst. Metals, 1934, Vol. 54, p. 111.
    40. A. A. Presnyakov: Sverkhplastichnost Metallov I Splavov, publ. ‘Nauka,’ Alma Ata, U. S. S. R., 1969
    41. E. E. Underwood: J. Metals, Vol. 14, December 1962, p. 914.
    42. W. A. Backofen, I. R. Turner, and D. H. Avery, “Superplastic in an Al-Zn Alloy” Trans. ASM, Vol. 57, 1964, p.980.
    43. M. M. Ahmed and T. G. Langdon, “Exceptional Ductility in the Superplastic Pb-62 Pct Sn Eutectic” Metall Trans. A, Vol. 8A, 1977, pp. 1832-1835
    44. J. W. Edington, “Microstructure Aspects Superplastic”, Metall. Trans. A, Vol. 13A, 1982, pp. 703-715
    45. 黃元璋,“往復式擠製Zn-22% Al合金高速超塑性及射出成型性之研究”,國立清華大學材料科學工程研究所碩士論文,1997。
    46. R. Grimes, C. Baker, M. J. Stowell, and B. M. Watts: Aluminum, Vol. 51, 1975, p. 720.
    47. A. K. Mukherjee, “ Superplasticity in Metals, Ceramics and Inter-Metallics” in Superplastic Forming of a Symposium, ASM, 1985, pp. 408-460
    48. A. K. Gghosh, and C. H. Hamilton, Mechanical Behavior and Hardening Characteristic of a Superplastic Ti-6Al-4V Alloy, Metall, Trans. A, Vol.10A, June, 1979, pp. 699-706
    49. O. A. Ruano, J. Wadsworth and O. D. Sherby, “ Enhanced Densification of White Cast Iron Powders by Cyclic Phase Transformations Under Stress”, Metall. Trans., Vol. 13A, 1982, pp. 355-361
    50. R. C. Lobb, E. C. Sykes and R. H. Johnson, “ Internal Stress Superplasticity in Some Materials”, Metal Sci., Vol. 19, 1972, p. 6
    51. 林兆榮,金屬超塑性成型原理及應用,航空工業出版社,1990
    52. R. E. Reed-Hill, "Physical Metallurgy Principles", 3rd Edition, PWS Pub. Com., 1994
    53. T. G. Nieh, C. H. Henshall and J. Wadsworth, “ Creep-Rupture of a Silicon-Carbide Reinforced Aluminum Composite”, Scripta Metall., Vol. 18, 1984, pp. 1405-1508
    54. T. G. Nieh, P. S. Gilman and J. Wadsworth, Metal Sci., Vol. 19, 1985, p. 1375
    55. O. A. Ruano, J. Wadsworth and O. D. Sherby, “ Deformation Mechanisms in an Austenitic Stainless Steel (25Cr-20Ni) at Elevated Tem-perature”, J. Mater. Sci., Vol. 20, 1985, pp. 3735-3744
    56. K. Matsuki, H. Sugahara, T. Aida, and N. Takatsuji, “Effect of Microstructure Refinement on High Strain Rate Superplastic in a PM 2024Al-Fe-Ni Alloy”, Materials Transactions, JIM, Vol. 40, No8 1999, p. 737
    57. N. Chandra, S. C. Rama and Z. Chen, “Critical Issue in the Industrial Application of SPF-Process Modeling and Design Practices”, Materials Transactions, JIM, Vol. 40,No. 8 1999, p. 723.
    58. A. K. Ghosh and C.H. Hamilton, “Influences of Material Parameters and Microstructure on Superplastic Forming”, Metall. Trans. A, Vol. 13A, 1982, pp. 733-743
    59. A. Arieli and A. Mukherjee, “The Rate-Controlling Deformation Mechanisms in Superplasticity - A Critical Assessment”, Metall. Trans. A, Vol. 13A, 1982, pp. 717-732
    60. T. R. Bieler and A. K. Mukherjee, “ The High-Strain-Rate Superplastic Deformation Mechanism of Mechanically Alloyed Aluminum-IN 90211”, Mater. Sci. Eng., A128, 1990, pp. 171-182
    61. 吳易座,“Ti3Al-Nb鈦鋁鈮介金屬合金之超塑性研究”,國立台灣大學材料科學與工程科學研究所博士論文,1996
    62. M. Mabuchi, H. Iwasaki, K. Yanase and K. Higashi, ”Low Temperature Superplastic in an AZ91 Magnesium Alloy Processed by ECAE”, Scripta Mater., Vol. 36, No.6, 1997, pp. 681-686
    63. H. Watanabe, T. Mukai, M. Kohzu, S. Tanabe and K. Higashi, “Effect of Temperature and Grain Size on the Dominant Diffusion Process for Superplastic Flow in an AZ61 Magnesium Alloy”, Acta Mater. Vol. 47, No. 14, 1999, pp. 3753-3758
    64. H. Watanabe and T. Mukai, “Superplastic in a ZK60 Magnesium Alloy at Low Temperatures”, Scripta Mater. Vol. 40, No. 4, 1999, pp. 477-484,
    65. H. Watanabe, T. Mukai, M. Mabuchi and K. Higashi, “High-Strain-Rate Superplastic at Low Temperature in a ZK61 Magnesium Alloy Produced by Powder Metallurgy”, Scripta Mater., Vol. 41. No. 2. 1999, p. 209
    66. R. Z. Valiev, N. A. Krasilnikov and N. K. Tsenev, “Plastic Deformation of Alloys with Submicron-Grained Structure”, Mater. Sci. Eng., A137. 1991, pp. 35-40
    67. A. Uoya, T. Shibata, K. Higashi, A. Inoue and T. Masumoto, “Superplastic Deformation Characteristics and Constitution Equation in Rapidly Solidified Mg-Al-Ga Alloy”, Journal of Materials Research, Vol. 11, No. 11, 1996, pp. 2731-2737
    68. T. Mohri, M. Mabuchi, N. Saito, M. Nakamura, “Microstructure and Properties of a Mg-4Y-3RE Alloy Processed by Thermo-mechanical Treatment”, Mater. Sci. Eng., A257, 1998, pp. 287-294
    69. S. Celotto, “TEM Study of Continuous Precipitation in Mg-9wt%Al-1wt%Zn Alloy”, Acta mater 48(2000)1775-1787
    70. 李士瑋,"以往復式擠型法改善鋁合金/鎂合金機械性質及超塑行為之研究",國立清華大學材料科學工程研究所博士論文,2006.
    71. 劉正, 張奎, 曾小勤,”鎂基輕質合金理論基礎及其應用”,機械工業出版社,2002年9月

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE