簡易檢索 / 詳目顯示

研究生: 林峻立
Chun-Li Lin
論文名稱: YBa2Cu3O7-δ/Y0.7Ca0.3Ba2Cu3O7-δ 多層膜之傳輸性質
Transport properties of YBa2Cu3O7-δ /Y0.7Ca0.3Ba2Cu3O7-δ multilayers
指導教授: 齊正中
Cheng-Chung Chi
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 111
中文關鍵詞: 過摻雜釔鋇銅氧攙鈣釔鋇銅氧多層膜表面形態霍爾效應正負反轉雙重正負反轉傳輸性質超導體超導性具超導性的銅氧超導體高溫超導體高溫超導體
外文關鍵詞: overdope, YBCO, Ca-dope YBCO, multilayer, morphology, Hall effect, sign reversal, double sign reversal, transport properties, superconductor, superconductivity, superconducting, cuprate, HTSC, high-temperature superconductor
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們製作了不同m, N的 [(YBa2Cu3O7-δ)m/(Y0.7Ca0.3Ba2Cu3O7-δ)m]N多層膜並研究這些過摻雜 (overdoped) 多層膜在磁場下的傳輸性質。當δ ∼ 0.05 時, YBa2Cu3O7-δ 為最佳摻雜(optimum doped),所以僅改變氧含量幾乎不可能使 YBa2Cu3O7-δ 成為過摻雜態。將 Pr3+ 以 Ca2+ 取代將使該處晶胞 (unit cell) 增加一個電洞並增加 123 系統的摻雜程度 (doping level)。 Y0.7Ca0.3Ba2Cu3O7-δ 在一大氣壓氧氣下經過退火補氧後臨界溫度及電阻率都下降,證實了 Y0.7Ca0.3Ba2Cu3O7-δ 是過摻雜態。
    所有的薄膜都是由脈衝雷射濺鍍同組成的靶材所製成。X光圖形並無任何衛星峰 (satellite peak) 結構。我們量測了這些樣品在磁場下電阻率對溫度的變化 (r-T) 及 Hall 效應。室溫下 Y0.7Ca0.3Ba2Cu3O7-δ 薄膜的自由載子濃度最低,但電導度最高。所有的樣品中 Y0.7Ca0.3Ba2Cu3O7-δ 薄膜的反轉 Hall 訊號最難被磁場所壓制,而且 Hall 係數變號二次。
    我們推測鈣的擴散造成層與層間介面的模糊,因此無衛星峰出現。當磁場平行薄膜表面時,樣品 5/5 的電阻相變轉變寬度的增加量最小,意味著五層YBa2Cu3O7-δ 的厚度已大於二倍鈣的擴散長度。 Y0.7Ca0.3Ba2Cu3O7-δ 異常低的自由載子濃度可能導因於自由電子的產生而抵消了部份 Hall 電壓或是電洞的等效質量有所改變。我們認為 Hall 係數的二次變號現象是因為薄膜局部的臨界溫度隨著位置而改變及量測系統的溫度誤差所造成。


    We fabricate [(YBa2Cu3O7-δ)m/(Y0.7Ca0.3Ba2Cu3O7-δ)m]N multilayers with different combinations of (m,N) and study their transport properties in overdoped region under magnetic field. YBa2Cu3O7-δ reaches optimum doping with δ ∼ 0.05, indicating that YBa2Cu3O7-δ system can hardly evolve into overdoped region by merely altering their oxygen content. Replacing Pr3+ with Ca2+ increases one hole of the unit cell where substitution occurs and substantially doping level of 123 system. The decrease of both Tc and resistivity after annealing under 1 atm O2 proves that Y0.7Ca0.3Ba2Cu3O7-δ is overdoped.
    All the films are deposited by pulse laser deposition with stoichiometric targets. X-ray patterns of those multiplayers do not show any satellite peaks. We measure R-T under magnetic field and Hall effect. Sample 5/5 under magnetic field along a-b plane has smallest broadening of r-T. At room temperature Y0.7Ca0.3Ba2Cu3O7-δ single layer has smallest carrier concentration but largest conductivity. The sign reversal Hall signal of Y0.7Ca0.3Ba2Cu3O7-δ is the hardest to suppress by magnetic field among all the samples. Y0.7Ca0.3Ba2Cu3O7-δ has double sign reversal of Hall coefficient.
    We conjecture that the Ca diffusion blurs the interfaces between the layers and thus eliminates the satellite peaks. The smallest broadening of sample 5/5 implies that the thickness of 5 unit cell of YBa2Cu3O7-δ layer is longer than twice of the Ca diffusion length. The abnormally small carrier concentration of Y0.7Ca0.3Ba2Cu3O7-δ may be attributed to the coexistence of mobile holes and electrons or the variation of effective mass of holes. We argue that the double sign reversal is due to the inhomogeneous Tc distribution on the film and the temperature error.

    Table of Contents Abstract i Acknowledgements v Table of contents vi Chapter 1 Introduction 1 1-1 High-temperature superconductor 1 1-2 Ca-doped YBa2Cu3O7- 2 1-3 Artificial multilayers 3 1-4 Motivation 4 Chapter 2 Sample fabrication process 5 2-1 Pulse laser deposition system 5 2-2 Targets synthesis 6 2-3 Thin film deposition process 7 2-4 Pattern 8 Chapter 3 Effects of different deposition oxygen pressure on YBa2Cu3O7- and Y0.7Ca0.3Ba2Cu3O7- thin films 10 3-1 Features of pulse laser deposition 10 3-2 Effects of the oxygen pressure during deposition on the morphology 11 3-2-1 Surface morphology of YBa2Cu3O7- films deposited under different O2 pressure 13 3-2-2 Surface morphology of Y0.7Ca0.3Ba2Cu3O7- films deposited under different O2 pressure 23 3-3 The effects of oxygen pressure on R-T 37 3-4 The effects of oxygen pressure on the crystal structure 41 3-4-1 The X-ray θ-2θ measurement of epitaxial thin films 41 3-4-2 Structure variation due to deposition ambient 42 3-5 Discussion and summary 46 Chapter 4 Fundamental properties of YBa2Cu3O7-δ/Y0.7Ca0.3Ba2Cu3O7-δ multilayers 48 4-1 The YBa2Cu3O7- /Y0.7Ca0.3Ba2Cu3O7- multilayers structure 48 4-2 The effect of etching with C10H16N2O8 solution 50 4-3 Transport measurement 52 4-4 The current distribution in the layer structure 54 4-5 The resistive transition broadening 56 4-6 Derivation of Hc2(T) and other anisotropic parameters 59 4-7 Thermal activation energy 62 4-8 Summary 80 Chapter 5 Hall effect at normal and mixed state 82 5-1 Hall measurement 82 5-2 The Hall coefficient and charge carrier concentration 84 5-3 The temperature dependence of Hall angle 86 5-4 Sign reversal of Hall effect 91 5-5 Double sign reversal Hall effect 98 5-6 Summary 101 Chapter 6 Conclusions 105 References 107

    References

    Chapter 1
    1J. G. Bednorz and K. A. Müller, Z. Phys. B, 64, 189 (1986).
    2M. K. Wu et al., Phys. Rev. Lett. 58, 908 (1987).
    3A. Junod, in “Physical Properties of High Temperature Superconductors”(D. M. Ginsberg, Ed.) Vol. 2, Chap. 2, World Scientific, Singapore, 1990.
    4A. Schilling, M. Cantoni, J. D. Guo, and H. R. Ott, Nature 363, 56 (1993).
    5W. E. Lawrence and S. Doniach, in E. Kanda (ed.) Proc. 12th Int. Conf. Low. Temp. Phys. (Kyoto, 1970; Keigaku, Tokyo, 1971), p. 361.
    6A. Manthiram, S. J. Lee, and J. B. Goodenough, J. Solid State Chem. 73, 278 (1988).
    7A. Manthiram and J. B. Goodenough, Physica C 159, 760 (1989).
    8C. Greaves and P. R. Slater, Supercond. Sci. Technol. 2, 5 (1989).
    9E. M. McCarron III, M. K. Crawford, and J. B. Parise, J. Solid State Chem. 78, 192 (1989).
    10C. Gledel, J. F. Marucco, and B. Touzelin, Physica C 165, 437 (1990).
    11J. –M. Triscone, M. G. Karkut, L. Antognazza, O. Brunner, and Ø. Fischer, Phys. Rev. Lett. 63, 1016 (1989).
    12Refer to the following two review articles: I. Bozovic and J. N. Eckstein, in Physical Properties of High Temperature Superconductors V (World Scientific, Singapore, 1996), Chapter 3, p 99; J. -M. Triscone and Ø. Fischer, Rep. Prog. Phys. 60 (1997).

    Chapter 3
    1J. B. Nelson and D. P. Riley, Proc. Phys. Soc. 57, 160 (1945).

    Chapter 4
    1I. K. Schuller, Phys. Rev. Lett. 44, 1597 (1980).
    2D. Chrzan and P. Dutta, J. Appl. Phys. 59, 1504 (1986).
    3W. Sevenhans et al, Phys. Rev. B 34, 5955 (1986).
    4B. M. Clemens and J. G. Gay, Pyhs. Rev. B 35, 9337 (1987).
    5 J. –P. Locquet et al, Phys. Rev. B 38, 3572 (1988). Phys. Rev. B 39, 13338 (1989).
    6E. E. Fullerton et al, Phys. Rev. B 45, 9292 (1992).
    7E. E. Fullerton et al, Phys. Rev. Lett. 69, 2859 (1992).
    8M. K. Wu et al, Phys. Rev. Lett. 58, 908 (1987).
    9J. Z. Sun et al, Phys. Rev. Lett. 58, 1574 (1987).
    10 Y. Iye et al, J. Appl. Phys. 26, L1057 (1987).
    11M. Oda et al, Phys.Rev. B 38, 252 (1988).
    12T. T. M. Palstra et al, ibid. 5102.
    13J. Y. Juang et al, ibid. 7045.
    14N. R. Wathamer, E. Helfand, and P. C. Hohengerg, Phys. Rev. 147, 295 (1966).
    15J. Bardeen and M. J. Stephen, Phys. Rev. 140, A1197 (1965).
    16Y. B. Kim and M. J. Stephen in R. D. Parks (ed.), Superconductivity, volume 2 (Marcel Dekker, Inc., New York, 1969), p1138.
    17P. W. Anderson, Phys. Rev. Lett. 9, 309 (1962); P. W. Anderson and Y. B. Kim, Rev. Mod. Phys. 36, 39 (1964).
    18M. Tinkham, Phys. Rev. Lett. 61, 1658 (1988).
    19V. Ambegaokar and B. I. Halperin, Phys. Rev. Lett. 22, 1364 (1969).
    20Y. Yeshurun and A. P. Malozemoff, Phys. Rev. Lett. 60, 2202 (1988).
    21A. I. Larkin and Yu. V. Ovchinnikov, J. Low Temp. Phys. 34, 409 (1979).
    22M. P. A. Fisher, Phys. Rev. Lett. 62, 1415 (1989); R. H. Koch et.al., Phys. Rev. Lett. 63, 1511 (1989); D. S. Fisher, M. P. A. Fisher and D. A. Huse, Phys.Rev. B 43, 130 (1991).
    23T. T. M. Palstra, B. Batlogg, R. B. van Dover, L. F. Schneemeyer, and J. V. Waszczak, Phys.Rev. B 41, 6621 (1990).
    24C. W. Hagen and R. Griessen, Phys. Rev. Lett. 62, 2857 (1989).
    25O. Brunner et. al., Phys. Rev. Lett. 67, 1354 (1991).
    26L. M. Wang, PHD thesis, Department of Physics, National Taiwan University, Taiwan, R.O.C.
    Chapter 5
    1T. R. Chien, Z. Z. Wang and N. P. Ong, Phys. Rev. Lett. 67, 2088 (1991).
    2T. R. Chien, D. A. Brawner, Z. Z. Wang, and N. P. Ong, Phys. Rev. B 43, 6242 (1991).
    3P. W. Anderson, Phys. Rev. Lett. 67, 2092 (1991).
    4B. Wuyts et. al., Phys. Rev. B 47, 5512 (1993).
    5A. Carrington, D. J. C. Walker, A. P. Mackenzie, and J. R. Cooper, Phys. Rev. B 48, 13051 (1993).
    6B. Wuyts, V. V. Moshchalkov, and Y. Bruynseraede, Phys. Rev. B 53, 9418 (1996).
    7Ping Xiong,Gang Xiao, and X. D. Wu, Phys. Rev. B 47, 5516 (1993).
    8S. J. Hagen et al., Phys. Rev. B 47, 1064 (1993).
    9T. R. Chien, T. W. Jing, N. P. Ong, and Z. Z. Wang, Phys. Rev. Lett. 66, 3075 (1991);
    J. M. Harris et al., ibid. 73, 1711 (1994).
    10D. M. Ginsberg and J. T. Manson, Phys. Rev. B 51, 515 (1995).
    11 S. J. Hagen et al., Phys. Rev. B 43, 6246 (1991).
    12A. V. Samoilov, Z. G. Ivanov, and L.-G. Johansson, Phys. Rev. B 49, 3667 (1994).
    13T. W. Jing and N. P. Ong, Phys. Rev. B 42, 10781 (1990).
    14R. R. Hake, Phys. Rev. 168, 442 (1968).
    15A. G. Aronov, S. Hikami, and A. I. Larkin, Phys. Rev. B 51, 3880 (1995).
    16A. W. Smith, T. W. Clinton, C. C. Tsuei, and C. J. Lobb, Phys. Rev. B 49, 12927 (1994).
    17J. Bardeen and M. J. Stephen, Phys. Rev. 140, A1197 (1965).
    18P. Nozieres and W. F. Vinen, Philos. Mag. 14, 667 (1966).
    19R. Ferrel, Phys. Rev. Lett. 68, 2524 (1992).
    20J. M. Harris, N. P. Ong, and Y. F. Yan, Phys. Rev. Lett. 71, 1455 (1993).
    21Z. D. Wang and C. S. Ting, Phys. Rev. Lett. 67, 3618 (1991).
    22R. C. Budhani, S. H. Liou, and Z. X. Cai, Phys. Rev. Lett. 71, 621 (1993).
    23S. Ullah and A. T. Dorsey, Phys. Rev. B 44, 262 (1991).
    24A. T. Dorsey, Phys. Rev. B 46, 8376 (1992).
    25R. J. Troy and A. T. Dorsey, Phys. Rev. B 47, 2715 (1993)
    26N. B. Kopnin, B. I. Ivlev, and V. A. Kalatsky, J. Low. Temp. Phys, 90, 1 (1993).
    27J. M. Harris et al., Phys. Rev. B 51, 12053 (1995).
    28J. Schoenes, E. Kaldis, and J. Karpinski, Phys. Rev. B 48, 16869 (1995).
    29K. Nakao et al., Phys. Rev. B 57, 8662 (1998).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE