簡易檢索 / 詳目顯示

研究生: 劉宏泰
Hung-Tai Liu
論文名稱: 針對短期時間結核病控制之最佳資源分配
Optimal Resource Allocation for Tuberculosis Epidemiology Control over Short Time Horizons
指導教授: 溫于平
Ue-Pyng Wen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 51
中文關鍵詞: 結核病都治計畫傳染病模型最佳化資源分配
外文關鍵詞: tuberculosis, DOTS, Epidemic model, Optimization, Resource allocation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 結核病是危害人類健康歷史久遠的慢性傳染病,是一種目前仍普遍存在於全世界,尤其是未開發及開發中國家的慢性傳染病,若給予適當的抗結核藥物治療,結核病幾乎可以百分之百痊癒(Cure);但若不予治療,則在3年內,約有一半的病人會死亡。而目前結核病發展成致命性「抗藥性結核病」及結核病與愛滋病雙重流行,更恐將成為人類浩劫。傳染病的危害防制,是考驗著國家衛生制度的重要指標,如何能夠在有效的資源下達到預防傳染病的最佳化,是我們所關心的議題。
    根據世界衛生組織的報告指出,都治計畫(DOTS)是一個最有效益的防治方法,本研究首先在傳染病模型中增加結核病患者中常見的多重抗藥性患者(Drug resistance),並且將其影響一併加入模型中,同時並考慮一些有效防制的方法,像是推動「落實結核病人直接觀察治療(都治DOTS)計畫」、「降低傳染性結核病病人的傳播率」等方法,驗證都治計畫是否為一最有效益之方式;其次,考量多個受到結核病威脅的區域,針對該區域結核病肆虐的情形,找出預防及控制結核病最有效的資源分配方式。最後,我們以一個例子說明利用近似式找尋最佳化的進行步驟。


    Tuberculosis is a chronic infectious disease which endangers the human health for a long time. It is a common disease existing in the whole world at present time, especially in the undeveloped and developing country. If properly cared, the tuberculosis patient can almost be cured. Otherwise, if not taking effective cure method, half of the tuberculosis patient will die in three years. And now the tuberculosis is developed into the mortal case – the drug resistance TB and the prevailing of the TB and AIDS which is a great calamity. The danger of the infectious disease in one country is the important index of testing system of national hygiene. How can we minimize the number of the infectious patients under the limited budget is what we are concerned.
    In this thesis, first we add the common case - infection of drug resistance compartment in our epidemic model, and we also consider the transmission rate of transferring from chronic patients to drug resistance case. We provide some preventing method usually used to control tuberculosis, like DOTS and reducing the contact rate…, and so on. Second, we consider different TB situations in different regions. In any one of the regions , when we collect the data and know the distribution of TB patients in each compartment, we can find out the best resource allocation method to control the disease, Finally, we present one example to illustrate the steps how we get the optimal solution by approximating method.

    摘要 i ABSTRACT ii 誌謝詞 iii LIST OF FIGURES v LIST OF TABLES vi 1 INTRODUCTION 1 1.1 Background 1 1.2 Motivation 2 1.3 Research Framework 5 2 LITERATURE REVIEW 7 2.1 Epidemic Model 7 2.2 Production Function 10 2.3 Optimization Models 10 2.4 Summary 12 3 MODEL CONSTRUCTION 15 3.1 Problem Statement 15 3.2 Model Framework 17 3.2.1 State Description 17 3.2.2 Parameter Definition 19 3.2.3 Tuberculosis Control Interventions 20 3.2.4 Epidemic Model and Equations 23 3.3 Resource Allocation Problem 25 4 NUMERICAL ANALYSIS 31 4.1 Design of Experiment 31 4.2 Experimental Results 32 4.2.1 Approximation Methods to Approach the Optimal Objective Value 32 4.2.2 Cases Analysis 40 4.2.3 Optimal Resource Allocation Given Current condition 41 5 CONCLUSIONS 48 REFERENCES 50

    [1] 陸坤泰主編。結核病診治指引。臺北市/衛生署疾管局(2004)
    [2] 環境資訊中心。傳染病控制。民國九十五年十月一日,取自:http://e-info.org.tw/node/11992
    [3] 疾病管制局結核病防制組(2006)。結核病十年減半全民動員計畫。民國九十五年十月六日,取自: http://www.cdc.gov.tw/
    [4] Bailey N.J. , The Mathematical Theory of Infectious Diseases and its Applications. Hafner Press, New York. .(1975)
    [5] Birch S. and Gafni A. , Cost effectiveness/utility analyses. Do current decision rules lead us to where we want to be? Journal of Health Economics, 11,279-296. (1992)
    [6] Brandeau M. L., Allocating resource to control infectious disease, Operations research and health care. 443-464 (2004)
    [7] Garcia A., Maccario J. and Richardson S.,Modelling the Annual Risk of Tuberculosis Infection. International Journal of Epidemiology. Vol.26 No.1 190-203 (1996)
    [8] Greenhalgh, D. , Control of an epidemic spreading in a heterogeneously mixing population. Mathematical Biosciences, 80, 23-45 (1986).
    [9] Hethcote E. H., An immunization model for a heterogeneous population. Theoretical population biology 14,338-349. (1978)
    [10] Lefevre C., Optimal Control of a Birth and Death Epidemic Process. Operations Research, Vol 29, 971-982 (1981).
    [11] Revelle, C., Feldmann F. and Lynn W., An optimization model of tuberculosis epidemiology. Management Science,16,B190-B211. (1969)
    [12] Richter, A., Brandeau M.L. and Owens D.K., An analysis of optimal resource allocation for HIV prevention among injection drug users and nonusers. Medical Decision Making,19,167-179. (1999)
    [13] Sethi S.P. , Optimal quarantine programmes for controlling an epidemic spread. Journal of the Operational Research Society,29,265-268. (1978)
    [14] World Health Organization (1999). Removing Obstacles to Health Development. Retrieved October 1, 2006, from http://www.who.int/infectious-disease-report/index.html .
    [15] World Health Organization (2006). Report on the Global HIV/AIDS Epidemic, October 2006 . Retrieved October 9, 2006, from, http://www.unaids.org/en/HIV_data/2006GlobalReport/default.asp.
    [16] World Health Organization (2006). Drug-resistance: Tuberculosis. Retrieved October 11, 2006, from http://www.who.int/drugresistance/tb/en/ .
    [17] World Health Organization.(2006). Health topics:Tuberculosis. Retrieved October 11, 2006, from http://www.who.int/topics/tuberculosis/en/.
    [18] World Health Organization (2006).Stop Tuberculosis. Retrieved October 12, 2006 from http://www.emro.who.int/stb/ .
    [19] World Health Organization.(2003). Server Acute Respiratory Syndrome(SARS) – multi-country outbreak. Retrieved September 20, 2006 from http://www.who.int/csr/don/archive/disease/severe_acute_respiratory_syndrome/en/
    [20] Zaric, G.S. and Brandeau M.L. and Richter A., Optimal resource allocation for epidemic control among multiple independent populations: Beyond cost effectiveness analysis. Journal of Health Economics,22,575-598 (2003)
    [21] Zaric, G.S. and Brandeau M.L., Resource allocation for epidemic control over short time horizons. Mathematical Biosciences,171,33-58 (2001)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE