研究生: |
張淑雅 Shu-Ya Chang |
---|---|
論文名稱: |
無鈀活化之無電鍍鈷合金作為銅內連線覆蓋層之研究 Pd-free Electroless Co-based Deposition for Cu Capping Process |
指導教授: |
萬其超
Chi-Chao Wan 王詠雲 Yung-Yun Wang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2007 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 138 |
中文關鍵詞: | 無電鍍 、鈷合金 、銅內連線 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係以不需鈀金屬活化之無電鍍法,藉著還原劑dimethylamine borane (DMAB)氧化可將鈷合金選擇性沈積在銅內連線上,作為擋層和覆蓋層之應用。由SEM和TEM 分析顯示,若與傳統鈀活化相較,不經鈀活化步驟具有較高的選擇性,亦不會導致嚴重的電阻上升之優勢。而由AFM的結果可以知道,在約小於17.5 nm厚度的薄膜,CoBP比CoB具有較小的粗糙度。此鈷合金為nano-crystalline結構,此結構即使經過400 °C 持溫30分鐘之熱處理亦無顯著變化。此外,由AES縱深分析結果顯示銅原子並沒有擴散至鈷合金內,表示此鈷合金可作為擋層。
Cyclic voltammetry (CV)和electrochemical impedance spectroscopy (EIS) 等電化學分析方法可用來了解無電鍍鈷合金(CoBP)的反應機制。我們發現Hypophosphite會抑制DMAB的氧化反應。由於銅表面對於DMAB具有催化能力,所以可以提供DMAB一催化表面來轉移電子,但對於hypophosphite則是相反的作用。而在較低的[OH-]時,DMAB無法形成足夠的BH3OH-,此時hypophosphite的氧化反應較為顯著,且在銅表面上的電子轉移阻抗較大;而在較高的[OH-]時,OH-會與hypophosphite在銅表面進行競爭吸附,此時DMAB可形成足夠的BH3OH-並進行氧化反應,故在銅表面的電子轉移阻抗較小。而無電鍍鈷合金的選擇性亦受[DMAB]、[hypophosphite]和 [OH-] 之影響。 較高的[DMAB]和[OH-]會容易導致鈷合金生長於dielectric的表面; 較高[hypophosphite]的則可以得到較高的選擇性鈷合金沈積。
由於控制無電鍍鈷合金沈積在複雜的IC結構之選擇性並不容易,因此本研究亦開發出一種自發性還原diazonium離子可以不需額外的電子提供並在室溫下,即可直接與銅面反應改質。此證據可由XPS和IR分析可以得到。而由SEM、RS和line-to-line leakage current的觀察可得知無電鍍鈷金屬在dielectric上沈積的情況大幅減少,而使選擇性增加。這是因為在此經過改質的銅位置上,進行無電鍍反應的電子轉移阻抗較大,因此降低了無電鍍鈷金屬的還原。
A highly selective and self-activated Co-based deposition with dimethylamine borane (DMAB) as reductant for Cu-lines capping process is presented. SEM and TEM images show higher selectivity of Co-based alloy on Cu surface as compared with conventional Pd-activation as a pretreatment step in conventional electroless deposition. Furthermore, an 8.6 % Rs increase via Pd-activation process over the proposed self-activated process indicates that Pd may diffuse into Cu line and induce Rs increase. AFM analysis indicates less roughness for CoPB than CoB film especially for thin film with less than ~17.5 nm thick. Results from GIXRD analysis on as-deposited Co-based films reveal that it has nano-crystalline structure. Such structure changes very little after annealing over 400 °C for 30 min. AES depth profiles also reveal uniform distribution of the elemental components and extremely low B content. Additionally, Cu was not detected on Co cap film, indicating such films could serve as diffusion barrier layer to inhibit Cu diffusion.
The oxidation process of electroless CoBP was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The oxidation peak of DMAB was greatly suppressed with addition of hypophosphite. At low [OH-], obvious oxidation peak of hypophosphite was attained due to insufficient formation of BH3OH- , which showed slow charge transfer on Cu surface; at high [OH-], distinct competition between hypophosphite and OH- and sufficient BH3OH- formed, which enhanced the oxidation of DMAB and indicated faster charge transfer. The selectivity of electroless Co deposition was found to be strongly influenced by [DMAB], [hypophosphite], and [OH-]. Extraneous Co deposition was observed with increasing [DMAB] and [OH-], however, selective Co deposition was obtained with increasing [hypophosphite].
In addition, a one-step, room-temperature route to form carbon-metal bonds via spontaneous reduction of diazonium ion in an acid solution has been developed. This property was later employed to design a new improved process for self-activated electroless Co deposition on Cu without Pd activation. XPS and IR analysis show the evidence of direct organic molecules attachments on Cu. From SEM, electrical resistance (Rs) and line-to-line leakage current observations, the selectivity of Co deposition on the modified Cu surface has been greatly improved. Impedance measurements indicated that the charge transfer of electroless reaction was partially blocked by highly covalent bond to Cu surface.
References
[1] S. P. Jeng, R. H. Havemann and M. C. Chang, MRS Symp. Proc., 337, 25 (1994).
[2] H. Sanchez, proceedings of IEEE 2003 International Interconnect Technology Conference, 3 (2003).
[3] J. Plummer, M. Deal and P. Griffin, Silicon VLSI Technology, p. 682-686, Prentice Hall, NJ (2000).
[4] J. Plummer, M. Deal and P. Griffin, Silicon VLSI Technology, p. 702-703, Prentice Hall, NJ (2000).
[5] S.Y. Oh and K. J. Chang, IEEE Circuits and Devices, 11, 16 (1995).
[6] P. Kapur, G. Chandra, J. P. McVittie and K. C. Saraswat., IEEE Trans. Electron Dev., 49, 598 (2002).
[7] P. Kapur, J. P. McVittie and K. C. Saraswat., IEEE Trans. Electron Dev., 49, 590 (2002).
[8] S. M. Sze, Physics of Semiconductor Devices, John Willy & son, Inc., New York (1981).
[9] D. S. Gardner, J. D. Meindl and K. C. Saraswat., IEEE Trans. Electron Dev., 34, 633 (1987).
[10] R. A. Powell, A. S. Harrus and R. Hill, Raising the IC speed limit by the use of copper interconnects, Novwllus Systems, Inc. (2000).
http://www.novellus.com/damascu/tec/tec_15.asp
[11] Novwllus Systems, Step 10 Cu electrofill, Novwllus Systems, Inc. (2000).
http://www.novellus.com/damascu/tsd/tsd_15.asp
[12] D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh and N. Lusting, Proc. IEEE IEDM, 773 (1997).
[13] T. N. Theis, IBM J. Res. Develop., 44 (3), 379 (2000).
[14] International Technology Roadmap for Semiconductor (2005).
[15] M. B. Anand, M. Yamada and H. Shibata, symp. On VLSI technology, 82 (1996).
[16] B. J. Howard and C. H. Steinbruchel, Appl. Phys. Lett., 59, 914 (1991).
[17] M. Takeyama, A. Noya, T. Sase and A. Ohta, J. Vac. Sci. Technol., 14, 674 (1996).
[18] P. C. Andricacos, C.Uzoh, J. O. Dukovic, J. Horkans and H. Deligianni, 193rd Meeting of the Electrochemical Society, San Diego, May 3-8 (1998).
[19] C. W. Kaanta, Proc. IEEE VMIC, 144 (1991).
[20] R. V. Joshi, IEEE Electron Devices Lett., 14, 129 (1993).
[21] P. C. Andricacos, C. Uzoh and J. O. Dukovic, IBM J. Res. Develop., 42(5), 567 (1998).
[22] D. C. Edelstein, G. A. Sai-Halasz and Y. J. Mii, IBM J. Res. Develop., 39, 383 (1995).
[23] M. A. Niclot, Thin Solid Films, 19, 52 (1978).
[24] S. P. Murarka, Defect and Diffusion Forum, 59, 99 (1988).
[25] E. Cheney, D. Lazaroff, D. Morales, L. Yap and L. Chiu, Solid State Technol., 40, 109 (1997).
[26] D. Zeidler, Z. Stavreva, M. Plotner and K. Drescher, Microelectronic Engineering, 37/38, 237 (1997).
[27] H. Ono, T. Nakano and T. Ohta, Appl. Phys. Lett., 64, 1511 (1994).
[28] M. Uekubo, T. Oku, K. Nii, M. Murakami, K. Takahiro, S. Yamaguchi, T. Nakano and T. Ohta, Thin Solid Films, 286, 170 (1996).
[29] J. C. Chuang, S. L. Tu and M. C. Chen, J. Electrochem. Soc., 146, 2643 (1999).
[30] G. S. Sandhu, S. G. Meikle and T.T. Doan, Appl. Phys. Lett., 62, 240 (1993).
[31] S. Q. Wang, I. J. Raaijmakers, B. J. Burrow, S. Suthar, S. Redkar and K. B. Kim, J. Appl. Phys., 68, 5176 (1990).
[32] J. O. Olowolafe, J. Li and J. W. Mayer, Appl. Phys. Lett., 58, 469 (1991).
[33] N. Cheung, H. von Seefeld and M. A. Nicolet, Proc Symp on Thin Film Interfaces and Interctions, The Electrochem. Soc., p.323, Princeton, NJ (1980).
[34] T. Nogami, J. Romero, V. Dubin, D. Brown and E. Adem, IEEE Transactions on Components, Packaging, and Manufacturing Technology, IITC 98 (1998).
[35] M. H. Tsai, S. C. Sun, C. P. Lee, H. T. Chiu and S. C. Wu, Thin Solid Films, 270, 531 (1995).
[36] C. Y. Allison, C. B. Finch, M. D. Foegelle and F. A. Modine, Solid State Commun., 68, 387 (1988).
[37] H. Y. Tsai, S. C. Sun and S. J. Wang, J. Electrochem. Soc., 147, 2766 (2000).
[38] S. M. Ho, S. M. Lian, K. M. Chen, J. P. Pan, T. H. Wang and Aina Hung, IEEE Transactions on Components, Packaging, and Manufacturing Technology A, 19, 202 (1996).
[39] A. Gill, C. Jahnes and C. Cabral Jr, Journal of Materials Research, 14, 1604 (1999).
[40] K. Nikawa, T. Saiki, S. Inoue and M. Ohtsu, Microelectronic and Reliability, 38, 883 (1998).
[41] T. Nakano, H. Ono, T. Ohta, T. Oku and M. Murakami, Proc. Int. IEEE VLSI Multilevel Interconnection Conf., 11, 407 (1994).
[42] P. J. Pokela, C. K. Kwok, E. Kolawa, S. Raud and M. A. Nicolet, Appl. Surf. Sci., 53, 364 (1991).
[43] J. Imahori, T. Oku and M. Murakami, Thin Solid Films, 301, 142 (1997).
[44] D. Gupta, Defect and Diffusion Forum, 59, 137 (1988).
[45] T. Iijima, Y. Shimooka and K. Suguro, Trans. Inst. Electron. Inform. Comm. Eng., 266 (1995).
[46] J. S. Reid, E. Kolawa, R. P. Ruiz and M. A. Nicolet, Thin Solid Films, 236, 319 (1993).
[47] E. Kolawa, J. S. Chen, J. S. Reid, P. J. Pokela and M. A. Nicolet, J. Appl. Phys., 70, 1369 (1991).
[48] J. S. Reid, E. Kolawa, T. A. tephens, J. S. Chen and M. A. Nicolet, Mater. Res. Soc. Conf. Proc., ULSI-Ⅶ, 285 (1992).
[49] L. Peters, Semiconductor International, March, 52 (2003).
[50] S. L. Cho, K. B. Kim, S. H. Min, H. K. Shin and S. D. Kim, J. Electrochem. Soc., 146, 3724 (1999).
[51] A. Kaloyeros, X. Chen, T. Stark, K. Kumar, S. C. Seo, G. G. Peterson, H. Frisch, B. Arkles and J. Sullivan, J. Electrochem. Soc., 146, 170 (1999).
[52] P. T. Liu, T. C. Chang, J. C. Hu, Y. L. Yang and S. M. Sze, J. Electrochem. Soc., 147, 368 (2000).
[53] B. Y. Yoo, Y. H. Park, H. D. Lee, J. H. Kim, H. K. Kang, M. Y. Lee, H. G. Wang, K. S. Lee, J. V. Gogh, C. H. Chu, S. Lai, B. McClintock, S. Edelsein and F. Chen, IEEE Transactions on Components, Packaging, and Manufacturing Technology, IITC 98 262 (1998).
[54] M. T. Wang, L. J. Chen and M. C. Chen, J. Electrochem. Soc., 146, 728 (1999).
[55] G. Beyer and M. V. Bavel, Micro, Oct. (2002).
[56] G. Q. Yu, B. K. Tay, S. P. Lau, K. Prasad and J. X. Gao, J. Phys. D: Appl. Phys., 36, 1355 (2003).
[57] A. E. Kaloyeros, X. Chen, T. Stark, K. Kumar, S. C. Seo, G. G. Peterson, H. L. Frisch, B. Arkles and J. Sullivan, J. Electrochem. Soc., 146, 170 (1999).
[58] R. Kro¨ger, M. Eizenberg, D. Cong, N. Yoshidab, L.Y. Chenb, S. Ramaswamib and D. Carl, Microelectron. Eng., 50, 375 (2000).
[59] D. Edelstein, C. Uzoh, C. Cabral Jr., P. Dehaven, P. Buchwalter and A. Simon, Proc. IEEE International Intercon. Tech. Con, Piscataway, NJ, 9 (2001).
[60] A. Brenner, J. Res. National Bar, Standard, 37, 1 (1946).
[61] M. Paunovic, P. J. Bailey and R. G. Schad, J. Electrochem. Soc., 141, 1843 (1994).
[62] V. M. Dubin and Y. Shacham-Diamand, J. Electrochem. Soc., 144, 898 (1997).
[63] Y. Shacham-Diamand and S. Lopatin, Microelectron. Eng., 37/38, 77 (1997).
[64] Y. Shacham-Diamand and V. M. Dubin, Microelectron. Eng., 33, 47 (1997).
[65] Y. Shacham-Diamand and S. Lopatin, Electrochimica Acta, 44, 3639 (1999).
[66] Y. Shacham-Diamand and Y. Sverdlov, Microelectron. Eng., 50, 525 (2000).
[67] Y. Shacham-Diamand, Y. Sverdlov and N. Petrov, J. Electrochem. Soc., 148, C162 (2001).
[68] A. Kohn, M. Eizenberg, Y. Shacham-Diamand and Y. Sverdlov, Mater. Sci. and Eng., A302, 18 (2001).
[69] A. Kohn, M. Eizenberg, Y. Shacham-Diamand, B. Israel and Y. Sverdlov, Microelectron. Eng., 55, 297 (2001).
[70] E. J. O’Sullivan, A. G. Schrott, M. Paunovic, C. J. Sambucetti, J. R. Marino, P. J. Bailey, S. Kaja and K. W. Semkow, IBM J. Res. Dev., 42, 607 (1998).
[71] Y. Wu, C. C.Wan and Y. Y. Wang, J. Electron. Mater., 34, 541 (2005).
[72] Y. Wu, C. C.Wan and Y. Y. Wang, PhD Thesis (2004).
[73] S. Y. Chang, C. C.Wan and Y. Y. Wang, Master Thesis (2004).
[74] S. M. Ho, S. M. Lian, K. M. Chen, J. P. Pan, T. H. Wang and A. Hung, IEEE Transactions on Components, Packaging, and Manufacturing Technology, 19, 202 (1996).
[75] International Technology Roadmap for Semiconductor (2002).
[76] J. A. Cunningham, Solid State Technology, Sep. (2003).
[77] P. Singer, Semiconductor International, Oct., 44 (2005).
[78] C. K. Hu, L. Gignac, R. Rosenberg, E. Liniger, J. Rubino and C. Sambucetti, Appl. Phys. Lett., 81(10), 1782 (2002).
[79] T. Saito, T. Imai, J. Noguchi and M. Kubo, proc. IITC, 15 (2001).
[80] J. R. Lloyd, Integrated Reliability Workshop, 32 (2002).
[81] L. G. Gosset, Proc. IEEE IITC, 15 (2004).
[82] S. Chhun, Microelectron. Eng., 82, 587 (2005).
[83] S. Chhun, Microelectron. Eng., 76, 106 (2004).
[84] R. D. Glodblatt, B. Agrawala, M. B. Anand and E. P. Barth, IEDD Tech. Dig., 261 (2000).
[85] M. R. Baklanov, Proc. IEEE IITC, 187 (2004).
[86] M. W. Lane, J. Appl. Phys., 93, 1417 (2002).
[87] T. Mori, T. Fukada, Y. Toyada, M. Hasegawa and N. Mikami, Proc. IEEE IITC, 487 (1996).
[88] H. Ashira, Proc. AMC, 595 (2005).
[89] K. Takeda, K. Hinode, I. Oodake and H. Yamaguchi, Proc. IRPS, 36 (1998).
[90] T. Saito, H. Ashihara and K. Ishikawa, IEEE Trans. Electron Dev., 51, 2129 (2004).
[91] A. Kohn, J. Appl. Phys., 94, 3810 (2003).
[92] A. Kohn, J. Appl. Phys., 94, 3015 (2003).
[93] B. Lee, Semiconductor International, July, 95 (2004).
[94] L. G. Gosset, Proceeding of AMC 2005, 587 (2006).
[95] L. M. Michaelson, Proceeding of AMC 2005, 577 (2006).
[96] C. K. Hu, Microelectron. Eng., 70, 406 (2003).
[97] T. Ko, Proceeding of VLSI, 109 (2003).
[98] C. K. Hu, R. Rosenberg and K. Y. Lee, Appl. Phys. Lett., 74, 2945 (1999) .
[99] A. Kohn, M. Eizenberg and Y. Shacham-Diamand, Appl. Surf. Sci., 212-213, 367 (2003).
[100] M. Yoshino, Y. Nonaka, J. Sasano, I. Matsuda, Y. Shacham-Diamand and T. Osaka, Electrochim. Acta, 51, 916 (2005).
[101] Y. Sverdlov, V. Bogush, H. Einati and Y. Shacham-Diamand, J. Electrochem. Soc., 152, 631 (2005).
[102] H. Einati, V. Bogush, Y. Sverdlov, Y. Rosenberg and Y. Shacham-Diamand, Microelectron. Eng., 82, 623 (2005).
[103] T. Osaka, N. Takano, T. Kurokawa, T. Kaneko and K. Ueno, J. Electrochem. Soc., 149, 573 (2002).
[104] T. Osaka, N. Takano, T. Kurokawa, T. Kaneko and K. Ueno, Surf. Coat. Technol., 169, 124 (2003).
[105] M. Kim, T. Yokoshima and T. Osaka, J. Electrochem. Soc., 148, 753 (2001).
[106] H. Nakano, T. Itabashi and H. Akahoshi, J. Electrochem. Soc., 152, 163 (2005).
[107] Y. Shacham-Diamand, A. Zylberman, N. Petrov and Y. Sverdlov, Microelectron. Eng., 64, 315 (2002).
[108] Osaka, N. Takano, T. Kurokawa, T. Kaneko and K. Ueno, J. Electrochem. Soc., 149, C573 (2002).
[109] T. Osaka, H. Yamazaki and I. Saito, J. Electrochem. Soc., 136, 3418 (1989).
[110] T. Saito, E. Sato, M. Matsuoka and C. Iwakura, J. Appl. Electrochem., 28, 559 (1998).
[111] Y. Sverdlov and Y. Shacham-Diamand, Microelectron. Eng., 70, 512 (2003).
[112] T. Osaka, K. Arai, N. Masubuchi, T. Tamazaki and T. Namikawa, Jpn. J. Appl. Phys., 28, 866 (1989).
[113] I. Koiwa, M. Usudo and T. Osaka, J. Electrochem. Soc., 135, 1222 (1988).
[114] E. Valove, S. Armyanov, A. Franquet, k. Petrov, D. Kovacheva, J. Dille, J. L. Delplancke, A. Hubin, O. Steenhaut and J. Vereecken, J. Electrochem. Soc., 151, C385 (2004).
[115] R. C. Alkire and D. M. Kolb, Advances in Electrochemical Science and Engineering, Vol. 7, Wiley-VCH, New York, 227 (2001).
[116] A. Brenner, Electrodeposition of alloys, Vol. 1-2, Academic Press, New York, 356 (1963).
[117] E. J. Padlaha and D. Landolt, J. Electrochem. Soc., 144, 1672 (1997).
[118] K. Huller, M. Sydow and G. Dietz, J. Magn. Mater., 53, 269 (1985).
[119] W. L. Liu, S. H. Hsieh, T. K. Tsai and W. J. Chen, J. Electrochem. Soc., 151, C680 (2004).
[120] S.Y. Chang, C.C. Wan, Y.Y. Wang, C.H. Shih, M.H. Tsai, S.L. Shue, C.H.
Yu and M.S. Liang, Thin Solid Films, 515, 1107 (2006).
[121] G. Mallory and J. Haidu, Editors, Electroless plating: Fundamental and Applications, AESF Publishing, Orlando, FL (1990).
[122] N. Petrov, Y. Sverdlov and Y. Shacham-Diamand, J. Electrochem. Soc., 149, C187 (2001).
[123] Y. Okinaka, Plating, 57, 914 (1970).
[124] H. Nakai, T. Homma, I. Komatsu, A. Tamaki and T. Osaka, J. Phys. Chem. B, 105, 1701 (2001).
[125] J. A. Gardiner and J. W. Collat, J. Am. Chem. Soc., 87, 1692 (1964).
[126] R. L. Pecsok, J. Am. Chem. Soc., 75, 2862 (1953).
[127] J. P. Elder, Electrochim. Acta, 7, 147 (1962).
[128] A. Sargent and O. A. Sadik, Langmuir, 17, 2760 (2001).
[129] F. Pearlstein and R. F. Weightman, J. Electrochem. Soc., 121, 1023 (1974).
[130] I. Ohno and S. Haruyama, Surf. Tech., 13, 1 (1981).
[131] G. Gaudiello and G. L. Ballard, IBM J. Res. Develop., 37, 107 (1993).
[132] A. J. Bard and L. R. Faulkner, Electrochemical methods, John Willy,
New York, (1980).
[133] C. K. Hu, J. Electrochem. Soc., 149, G408 (2002).
[134] T. Saito, J. Noguchi, M. Kubo, T. Imai and Y. Ito, Jpn. J. Appl. Phys., 43, 2447 (2004).
[135] M. P. Stewart, F. Maya, D. V. Kosynkin and S. M. Dirk, J. Am. Chem. Soc., 126, 370 (2004).
[136] C. Combellas, M. Delamar, F. Kanoufi, J. Pinson and F. I. Podvorica, Chem. Mater., 17, 3968 (2005).
[137] A. Adenier, M. C. Bernard, M. M. Chehimi and E. Cabet-Deliry, J. Am. Chem. Soc., 123, 4541 (2001).
[138] P. Allongue, M. Delamar and B. Desbat, J. Am. Chem. Soc., 119, 201 (1997).
[139] C. Saby, B. Ortiz, G. Y. Champagne and D. Be’langer, Langmuir, 13, 6805 (1997).
[140] A. Laforgue, T. Addou and D. Be’langer, Langmuir, 21, 6855 (2005).
[141] J. Ghilane, M. Delamar, M. Guilloux-Viry, C. Lagrost, C. Mangeney and P. Hapiot, Langmuir, 21, 6422 (2005).
[142] H. Zollinger, Diazo Chemistry I: Aromatic and Heteroaromatic Compounds, p.188, Weinheim (1994).
[143] S. Patai, The Chemistry of Diazonium and Diazo Groups, p.286, John Wiley & Sons, Ltd., New York (1978).
[144] C. Galli, Chem. Rev., 88, 765 (1988).
[145] B. L. Hurley and R. L. McCreery, J. Electrochem. Soc., 15, B252 (2004).
[146] R. M. Elofson and F. F. Gadallah, J. Org. Chem., 34, 854 (1969).
[147] G. Socrates, Infrared and Raman Characteristic Group Frequencies, p. 86-166, John Wiley & Sons, Ltd., New York (2001).