簡易檢索 / 詳目顯示

研究生: 張淑雅
Shu-Ya Chang
論文名稱: 無鈀活化之無電鍍鈷合金作為銅內連線覆蓋層之研究
Pd-free Electroless Co-based Deposition for Cu Capping Process
指導教授: 萬其超
Chi-Chao Wan
王詠雲
Yung-Yun Wang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 96
語文別: 英文
論文頁數: 138
中文關鍵詞: 無電鍍鈷合金銅內連線
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以不需鈀金屬活化之無電鍍法,藉著還原劑dimethylamine borane (DMAB)氧化可將鈷合金選擇性沈積在銅內連線上,作為擋層和覆蓋層之應用。由SEM和TEM 分析顯示,若與傳統鈀活化相較,不經鈀活化步驟具有較高的選擇性,亦不會導致嚴重的電阻上升之優勢。而由AFM的結果可以知道,在約小於17.5 nm厚度的薄膜,CoBP比CoB具有較小的粗糙度。此鈷合金為nano-crystalline結構,此結構即使經過400 °C 持溫30分鐘之熱處理亦無顯著變化。此外,由AES縱深分析結果顯示銅原子並沒有擴散至鈷合金內,表示此鈷合金可作為擋層。
    Cyclic voltammetry (CV)和electrochemical impedance spectroscopy (EIS) 等電化學分析方法可用來了解無電鍍鈷合金(CoBP)的反應機制。我們發現Hypophosphite會抑制DMAB的氧化反應。由於銅表面對於DMAB具有催化能力,所以可以提供DMAB一催化表面來轉移電子,但對於hypophosphite則是相反的作用。而在較低的[OH-]時,DMAB無法形成足夠的BH3OH-,此時hypophosphite的氧化反應較為顯著,且在銅表面上的電子轉移阻抗較大;而在較高的[OH-]時,OH-會與hypophosphite在銅表面進行競爭吸附,此時DMAB可形成足夠的BH3OH-並進行氧化反應,故在銅表面的電子轉移阻抗較小。而無電鍍鈷合金的選擇性亦受[DMAB]、[hypophosphite]和 [OH-] 之影響。 較高的[DMAB]和[OH-]會容易導致鈷合金生長於dielectric的表面; 較高[hypophosphite]的則可以得到較高的選擇性鈷合金沈積。
    由於控制無電鍍鈷合金沈積在複雜的IC結構之選擇性並不容易,因此本研究亦開發出一種自發性還原diazonium離子可以不需額外的電子提供並在室溫下,即可直接與銅面反應改質。此證據可由XPS和IR分析可以得到。而由SEM、RS和line-to-line leakage current的觀察可得知無電鍍鈷金屬在dielectric上沈積的情況大幅減少,而使選擇性增加。這是因為在此經過改質的銅位置上,進行無電鍍反應的電子轉移阻抗較大,因此降低了無電鍍鈷金屬的還原。


    A highly selective and self-activated Co-based deposition with dimethylamine borane (DMAB) as reductant for Cu-lines capping process is presented. SEM and TEM images show higher selectivity of Co-based alloy on Cu surface as compared with conventional Pd-activation as a pretreatment step in conventional electroless deposition. Furthermore, an 8.6 % Rs increase via Pd-activation process over the proposed self-activated process indicates that Pd may diffuse into Cu line and induce Rs increase. AFM analysis indicates less roughness for CoPB than CoB film especially for thin film with less than ~17.5 nm thick. Results from GIXRD analysis on as-deposited Co-based films reveal that it has nano-crystalline structure. Such structure changes very little after annealing over 400 °C for 30 min. AES depth profiles also reveal uniform distribution of the elemental components and extremely low B content. Additionally, Cu was not detected on Co cap film, indicating such films could serve as diffusion barrier layer to inhibit Cu diffusion.
    The oxidation process of electroless CoBP was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The oxidation peak of DMAB was greatly suppressed with addition of hypophosphite. At low [OH-], obvious oxidation peak of hypophosphite was attained due to insufficient formation of BH3OH- , which showed slow charge transfer on Cu surface; at high [OH-], distinct competition between hypophosphite and OH- and sufficient BH3OH- formed, which enhanced the oxidation of DMAB and indicated faster charge transfer. The selectivity of electroless Co deposition was found to be strongly influenced by [DMAB], [hypophosphite], and [OH-]. Extraneous Co deposition was observed with increasing [DMAB] and [OH-], however, selective Co deposition was obtained with increasing [hypophosphite].
    In addition, a one-step, room-temperature route to form carbon-metal bonds via spontaneous reduction of diazonium ion in an acid solution has been developed. This property was later employed to design a new improved process for self-activated electroless Co deposition on Cu without Pd activation. XPS and IR analysis show the evidence of direct organic molecules attachments on Cu. From SEM, electrical resistance (Rs) and line-to-line leakage current observations, the selectivity of Co deposition on the modified Cu surface has been greatly improved. Impedance measurements indicated that the charge transfer of electroless reaction was partially blocked by highly covalent bond to Cu surface.

    Table of Contents Abstract Ⅰ 摘要 Ⅲ Table of Contents Ⅴ List of Tables Ⅸ List of Figures Ⅹ Notation ⅩⅤ Chapter 1 Introduction to barrier/capping layer for Cu interconnects 1 1.1 General background of Cu interconnect technology 1 1.1.1 Interconnect delays 1 1.1.2 Electromigration reliability 5 1.1.3 The choice of Cu as interconnect material 6 1.1.4 Future interconnect trend: integration of Cu/low k dielectric 9 1.2 The role of barrier/capping layer in Cu interconnect technology 11 1.2.1 The introduction of barrier/capping layer 11 1.2.2 Mechanisms for barrier layer preventing Cu diffusion 13 1.3 Potential deposition technology solutions 19 1.3.1 Dry method: improved PVD,CVD and ALD 19 1.3.2 Wet method: electroless deposition 23 1.4 Metal capping approach to improve EM 26 1.4.1 Cu surface modification 26 1.4.2 Selective metal capping method 29 1.5 The objective and outline of this research 37 Chapter 2 Characterization of Pd-free electroless Co-based films for Cu capping process 39 2.1 Introduction 39 2.1.1 Electroless metal cap 39 2.1.2 Electroless Ni or Co films using hypophosphite as reductant 41 2.1.3 Electroless Ni or Co films using dimethylamine borane (DMAB) as reductant 45 2.1.4 The objective of this chapter 48 2.2 Experimental 49 2.2.1 Sample preparation 49 2.2.2 Electroless deposition of Co films 49 2.2.3 Instrumentation 49 2.3 Results and discussion 52 2.3.1 Comparison of Pd-activated and self-activated process 52 Selectivity study 52 Electrical property 55 2.3.2 Initial stage of electroless Co formation on Cu 56 Initiation time 56 AFM analysis 59 Deposition rate 61 2.3.3 Film properties of self-activated Co-based cap 64 Film composition 64 Film structure 68 2.3.4 Evaluation of Co-based cap as diffusion barrier layer 71 2.4 Conclusion 73 Chapter 3 Electrochemical investigation of Pd-free electroless Co-based capping layers on Cu surface 74 3.1 Introduction 74 3.1.1 Pd-free electroless Co cap 74 3.1.2 Deposition chemistry of electroless Co on Cu surface 75 3.1.3 The objective of this chapter 77 3.2 Experimental 78 3.2.1 Electrochemical investigation 78 3.2.2 Selectivity study 78 3.3 Results and discussion 82 3.3.1 Anodic polarization measurements 82 3.3.2 OCP observations 82 3.3.3 Study of deposition process by CV scans 84 The redox reactions of electroless Co-based solutions 84 [OH-] effect on the redox reactions of electroless Co-based solutions 86 3.3.4 Kinetics of Pd-free electroless Co deposition on Cu surface 89 EIS analysis 89 Deposition rate 94 3.3.5 Selectivity control by [DMAB], [hypophosphite] and [OH-] 98 3.4 Conclusions 101 Chapter 4 Selectivity enhancement of electroless Co deposition via spontaneous diazonium ion reduction 102 4.1 Introduction 102 4.1.1 Selectivity loss issue 102 4.1.2 Grafting of metal surface via diazonium ion reduction 104 4.1.3 The objective of this chapter 106 4.2 Experimental 107 4.2.1 Sample preparation 107 4.2.2 Spontaneous diazonium reduction on Cu surface 107 4.2.3 Formation of Co cap on unmodified and modified Cu surface 107 4.2.4 Instrumentation 107 4.3 Results and discussion 109 4.3.1 Spontaneous reduction of aryldiazonium salt on Cu surface 109 XPS analysis 110 IR analysis 112 4.3.2 Selectivity enhancement of Co-based cap on modified Cu surface 114 4.3.3 The kinetics of electroless Co deposition on modified Cu surface 116 OCP observations 117 Deposition rate 118 EIS analysis 119 4.4 Conclusion 121 Chapter 5 Conclusions and future work 122 5.1 Conclusions 122 5.2 Future work 124 References 126 About the Author 137 List of Tables Table 1.1 Interconnect technology requirements [14]. 10 Table 2.1 The composition of electroless Co or Ni alloy deposition solutions. 40 Table 2.2 Structural change of electroless NiMoP films by thermal treatment [109]. 43 Table 2.3 Summary of several film properties relates to [MoO42-]/[Ni2+], pH=9.5, temperature=90oC [71, 72]. 44 Table 2.4 Chemicals and operating conditions for electroless Co deposition. 51 Table 2.5 Average sheet resistance data ± one standard deviation for pre-clean, Pd activation and self activation.* 55 Table 2.6 Film composition of CoB with varying [DMAB] and [OH-]. 66 Table 2.7 Film composition of CoBP with varying [DMAB], [hypophosphite] and [OH-]. 67 Table 3.1 Chemicals and operating condition for electroless Co-based deposition. 79 Table 3.2 Rct and deposition rate data collected from Figs. 3.6 and 3.7, respectively. 96 Table 3.3 Effects of [DMAB] and [hypophosphite] on the selectivity of electroless Co-based deposition. 99 Table 4.1 Average Rs and leakage current data ± one standard deviation between linesa*. 116 List of Figures Fig. 1.1 Time delays caused by interconnect and gate at different feature size [1]. 3 Fig. 1.2 Cross-section picture of a typical CMOS multi-layer structure [4]. 4 Fig. 1.3 The influence of feature size shrinkage on Al or Cu interconnects delay and gate delay [10]. 7 Fig. 1.4 Cross-sectional SEM picture showing typical CMOS 7S interconnects with W local interconnections and six level of Cu wiring [13]. 8 Fig. 1.5 Simplified Dual-Damascence process for manufacturing Cu interconnects [19-21]. 12 Fig. 1.6 Schematic illustration of various diffusion barriers, inclusive of (a) sacrificial diffusion barrier, (b) stuffed diffusion barrier, (c) passive diffusion barrier, and (d) amorphous diffusion barrier [23]. 18 Fig. 1.7 Potential barrier solutions [14]. 22 Fig. 1.8 The comparison between NiMoP and the other conventional barrier [72]. 25 Fig. 1.9 CuSiN/SiN bi-layer simultaneous formation mechanisms during CuSiN process and TEM cross-section observation [82]. 28 Fig. 1.10 Distribution of EM lifetime with current density of 8 μA/cm at sample temperature of 300 0C changing the capping materials [90]. 32 Fig. 1.11 Cumulative probability distribution of the resistance shift after 1000-h for via chain samples with dielectric caps (black symbols) and Wcaps (open symbols) [90]. 33 Fig. 1.12 Cumulative probability distribution for samples with no Co and electroless Co capped Cu lines [77]. (Source: Applied Materials) 34 Fig. 1.13 (a) and (b) are cross section views of EM test structures [78]. 35 Fig. 1.14 Graph showing the resistance of a damascene Cu conductor, with and without a thin metal film on the top surface, vs time [78]. 36 Fig. 2.1 SEM images of capped Cu interconnections showing selective deposition of CoWB alloy, (a) top view (line/space = 0.25/0.25 μm), and (b) cross-sectional view (line/space = 0.4/0.9 μm) [106]. 47 Fig. 2.2 Schematic illustration of (a) typical dielectric cap structure (b) Pd-activated and self-activated electroless Co cap structure. 49 Fig. 2.3 Top-view SEM micrographs for electroless Co-based films via (a) Pd-activation and (b) self-activation. 53 Fig. 2.4 Cross-sectional TEM images for electroless Co-based films via (a) Pd-activation which shows selectivity loss on barrier layer and (b) self-activation. 54 Fig 2.5 Open-circuit potential change during electroless deposition of CoB on Cu at (a) 70 (b) 75 (c) 80 (d) 85 0C. Inset: Temperature dependence of initiation time. 57 Fig. 2.6 Open-circuit potential change during electroless deposition of CoBP on Cu at (a) 70 (b) 75 (c) 80 (d) 85 0C. Inset: Temperature dependence of initiation time. 58 Fig. 2.7 Three-dimensional AFM images of bare Cu surface prior to electroless Co deposition. 59 Fig. 2.8 Three-dimensional AFM images demonstrating electroless deposition of CoB with ~ (a) 8.5 (b) 17.5 (c) 35 nm thick and CoBP with ~ (d) 8.5 (e) 17.5 (f) 35 nm thick film. 60 Fig. 2.9 Relationship between deposition rate of electroless (a) CoB (b) CoBP and temperature (from 65-85 0C). 62 Fig. 2.10 Plot of ln (deposition rate) vs. 1/T for electroless (a) CoB (b) CoBP films. 63 Fig. 2.11 Grazing-incident XRD patterns of electroless CoB and CoWB film which are (a) before and (b) after heat-treated at 400 °C for 30 min. 69 Fig. 2.12 Grazing-incident XRD patterns of electroless CoPB and CoWPB film which are (a) before and (b) after heat-treated at 400 °C for 30 min. 70 Fig. 2.13 AES depth of electroless Co-based films which are (a)-(d): before and (e)-(f): after heat-treated at 400 °C for 30 min. 72 Fig. 3.1 Anodic polarization curves of reductants only including (a) DMAB (0.05 M) on Cu electrode, (b) DMAB (0.05 M) on Co electrode, (c) Hypophosphite (0.05 M) on Cu electrode and (d) Hypophosphite (0.05 M) on Co electrode. 81 Fig. 3.2 OCP of Cu electrode in the electroless Co-based solution including (a) Cu in CoP solution, (b) Pd/Cu in CoP solution, (c) Cu in CoB solution (d) Cu in CoBP solution ([Co2+], [hypophosphite], [DMAB]: 0.05 M). 83 Fig. 3.3 CV analysis of Co-based solution with (a) Co solution (b) CoB solution (c) CoBP solution ([Co2+], [hypophosphite], [DMAB]: 0.05 M). 85 Fig. 3.4 CV investigations in (a) Co solution without reductants (b) CoB solution (C) CoP solution (d) CoBP solution with [OH-]: 0.035-0.112 M ([Co2+], [hypophosphite], [DMAB]: 0.05 M). 88 Fig. 3.5 Equivalent circuit for a simple electroless deposition system [16]. 91 Fig. 3.6 Nyquist impedance plots for CoBP solutions with (a) [hypophosphite]: 0-0.2 M, [Co2+], [DMAB]: 0.05 M, [OH-]: 0.042 M (b) [DMAB]: 0-0.1 M, [Co2+], [hypophosphite]: 0.05 M, [OH-]: 0.042 M (c) [OH-]: 0-0.112 M, [Co2+], [hypophosphite], [DMAB]: 0.05 M. 92 Fig. 3.7 Relationship between electroless Co deposition rate and (a) reductants ([Co2+]: 0.05 M, [OH-]: 0.042 M, [DMAB]: 0.01-0.1M, [hypophosphite]: 0-■, 0.025-□, 0.05-▲, 0.2-△ M) (b) [OH-]: 0-0.112 M ([Co2+], [hypophosphite], [DMAB]: 0.05 M). 95 Fig. 3.8 1/Rct vs. deposition rate dependence with (a) [hypophosphite], (b) [DMAB] and (c) [OH-] (1/Rct and deposition rate calculated from Figs. 3.6 and 3.7, respectively). 97 Fig. 3.9 SEM images of selectivity study of electroless Co depositions on Cu lines with varying [OH-]: (a) 0 (b) 0.0175 (c) 0.077 (d) 0.112 M. 100 Fig. 4.1 Comparison of Cu contamination on dielectric surface [134]. 103 Fig. 4.2 Mechanism for spontaneous diazonium ion reduction on Fe surface [136]. 105 Fig. 4.3 XPS spectra of N1S peak of (a) unmodified Cu surface and (b) modified surface with diazonium salt treatment. 111 Fig. 4.4 Reflection FTIR spectra of (a) unmodified Cu surface and (b) modified Cu surface with diazonium salt treatment. 113 Fig. 4.5 Top-view of SEM images of electroless Co cap on (a) unmodified Cu and (b) modified Cu. 115 Fig. 4.6 The OCP of Cu electrode during electroless Co deposition. Electrode: (a) unmodified Cu, (b)-(d) modified Cu surface for 2, 5, and 15 min in diazonium salt solution, respectively. Inset: immersion time dependence of initiation time. 117 Fig. 4.7 The deposition rate of electroless Co deposition on (a) unmodified Cu surface, (b)-(d) modified Cu surface for 2, 5, and 15 min in diazonium salt solution, respectively. 118 Fig. 4.8 EIS analysis of electroless Co deposition on the Cu electrode. Electrode: (a) unmodified Cu, (b)-(d) modified Cu surface for 2, 5, and 15 min in diazonium salt solution, respectively. 120

    References

    [1] S. P. Jeng, R. H. Havemann and M. C. Chang, MRS Symp. Proc., 337, 25 (1994).
    [2] H. Sanchez, proceedings of IEEE 2003 International Interconnect Technology Conference, 3 (2003).
    [3] J. Plummer, M. Deal and P. Griffin, Silicon VLSI Technology, p. 682-686, Prentice Hall, NJ (2000).
    [4] J. Plummer, M. Deal and P. Griffin, Silicon VLSI Technology, p. 702-703, Prentice Hall, NJ (2000).
    [5] S.Y. Oh and K. J. Chang, IEEE Circuits and Devices, 11, 16 (1995).
    [6] P. Kapur, G. Chandra, J. P. McVittie and K. C. Saraswat., IEEE Trans. Electron Dev., 49, 598 (2002).
    [7] P. Kapur, J. P. McVittie and K. C. Saraswat., IEEE Trans. Electron Dev., 49, 590 (2002).
    [8] S. M. Sze, Physics of Semiconductor Devices, John Willy & son, Inc., New York (1981).
    [9] D. S. Gardner, J. D. Meindl and K. C. Saraswat., IEEE Trans. Electron Dev., 34, 633 (1987).
    [10] R. A. Powell, A. S. Harrus and R. Hill, Raising the IC speed limit by the use of copper interconnects, Novwllus Systems, Inc. (2000).
    http://www.novellus.com/damascu/tec/tec_15.asp
    [11] Novwllus Systems, Step 10 Cu electrofill, Novwllus Systems, Inc. (2000).
    http://www.novellus.com/damascu/tsd/tsd_15.asp
    [12] D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh and N. Lusting, Proc. IEEE IEDM, 773 (1997).
    [13] T. N. Theis, IBM J. Res. Develop., 44 (3), 379 (2000).
    [14] International Technology Roadmap for Semiconductor (2005).
    [15] M. B. Anand, M. Yamada and H. Shibata, symp. On VLSI technology, 82 (1996).
    [16] B. J. Howard and C. H. Steinbruchel, Appl. Phys. Lett., 59, 914 (1991).
    [17] M. Takeyama, A. Noya, T. Sase and A. Ohta, J. Vac. Sci. Technol., 14, 674 (1996).
    [18] P. C. Andricacos, C.Uzoh, J. O. Dukovic, J. Horkans and H. Deligianni, 193rd Meeting of the Electrochemical Society, San Diego, May 3-8 (1998).
    [19] C. W. Kaanta, Proc. IEEE VMIC, 144 (1991).
    [20] R. V. Joshi, IEEE Electron Devices Lett., 14, 129 (1993).
    [21] P. C. Andricacos, C. Uzoh and J. O. Dukovic, IBM J. Res. Develop., 42(5), 567 (1998).
    [22] D. C. Edelstein, G. A. Sai-Halasz and Y. J. Mii, IBM J. Res. Develop., 39, 383 (1995).
    [23] M. A. Niclot, Thin Solid Films, 19, 52 (1978).
    [24] S. P. Murarka, Defect and Diffusion Forum, 59, 99 (1988).
    [25] E. Cheney, D. Lazaroff, D. Morales, L. Yap and L. Chiu, Solid State Technol., 40, 109 (1997).
    [26] D. Zeidler, Z. Stavreva, M. Plotner and K. Drescher, Microelectronic Engineering, 37/38, 237 (1997).
    [27] H. Ono, T. Nakano and T. Ohta, Appl. Phys. Lett., 64, 1511 (1994).
    [28] M. Uekubo, T. Oku, K. Nii, M. Murakami, K. Takahiro, S. Yamaguchi, T. Nakano and T. Ohta, Thin Solid Films, 286, 170 (1996).
    [29] J. C. Chuang, S. L. Tu and M. C. Chen, J. Electrochem. Soc., 146, 2643 (1999).
    [30] G. S. Sandhu, S. G. Meikle and T.T. Doan, Appl. Phys. Lett., 62, 240 (1993).
    [31] S. Q. Wang, I. J. Raaijmakers, B. J. Burrow, S. Suthar, S. Redkar and K. B. Kim, J. Appl. Phys., 68, 5176 (1990).
    [32] J. O. Olowolafe, J. Li and J. W. Mayer, Appl. Phys. Lett., 58, 469 (1991).
    [33] N. Cheung, H. von Seefeld and M. A. Nicolet, Proc Symp on Thin Film Interfaces and Interctions, The Electrochem. Soc., p.323, Princeton, NJ (1980).
    [34] T. Nogami, J. Romero, V. Dubin, D. Brown and E. Adem, IEEE Transactions on Components, Packaging, and Manufacturing Technology, IITC 98 (1998).
    [35] M. H. Tsai, S. C. Sun, C. P. Lee, H. T. Chiu and S. C. Wu, Thin Solid Films, 270, 531 (1995).
    [36] C. Y. Allison, C. B. Finch, M. D. Foegelle and F. A. Modine, Solid State Commun., 68, 387 (1988).
    [37] H. Y. Tsai, S. C. Sun and S. J. Wang, J. Electrochem. Soc., 147, 2766 (2000).
    [38] S. M. Ho, S. M. Lian, K. M. Chen, J. P. Pan, T. H. Wang and Aina Hung, IEEE Transactions on Components, Packaging, and Manufacturing Technology A, 19, 202 (1996).
    [39] A. Gill, C. Jahnes and C. Cabral Jr, Journal of Materials Research, 14, 1604 (1999).
    [40] K. Nikawa, T. Saiki, S. Inoue and M. Ohtsu, Microelectronic and Reliability, 38, 883 (1998).
    [41] T. Nakano, H. Ono, T. Ohta, T. Oku and M. Murakami, Proc. Int. IEEE VLSI Multilevel Interconnection Conf., 11, 407 (1994).
    [42] P. J. Pokela, C. K. Kwok, E. Kolawa, S. Raud and M. A. Nicolet, Appl. Surf. Sci., 53, 364 (1991).
    [43] J. Imahori, T. Oku and M. Murakami, Thin Solid Films, 301, 142 (1997).
    [44] D. Gupta, Defect and Diffusion Forum, 59, 137 (1988).
    [45] T. Iijima, Y. Shimooka and K. Suguro, Trans. Inst. Electron. Inform. Comm. Eng., 266 (1995).
    [46] J. S. Reid, E. Kolawa, R. P. Ruiz and M. A. Nicolet, Thin Solid Films, 236, 319 (1993).
    [47] E. Kolawa, J. S. Chen, J. S. Reid, P. J. Pokela and M. A. Nicolet, J. Appl. Phys., 70, 1369 (1991).
    [48] J. S. Reid, E. Kolawa, T. A. tephens, J. S. Chen and M. A. Nicolet, Mater. Res. Soc. Conf. Proc., ULSI-Ⅶ, 285 (1992).
    [49] L. Peters, Semiconductor International, March, 52 (2003).
    [50] S. L. Cho, K. B. Kim, S. H. Min, H. K. Shin and S. D. Kim, J. Electrochem. Soc., 146, 3724 (1999).
    [51] A. Kaloyeros, X. Chen, T. Stark, K. Kumar, S. C. Seo, G. G. Peterson, H. Frisch, B. Arkles and J. Sullivan, J. Electrochem. Soc., 146, 170 (1999).
    [52] P. T. Liu, T. C. Chang, J. C. Hu, Y. L. Yang and S. M. Sze, J. Electrochem. Soc., 147, 368 (2000).
    [53] B. Y. Yoo, Y. H. Park, H. D. Lee, J. H. Kim, H. K. Kang, M. Y. Lee, H. G. Wang, K. S. Lee, J. V. Gogh, C. H. Chu, S. Lai, B. McClintock, S. Edelsein and F. Chen, IEEE Transactions on Components, Packaging, and Manufacturing Technology, IITC 98 262 (1998).
    [54] M. T. Wang, L. J. Chen and M. C. Chen, J. Electrochem. Soc., 146, 728 (1999).
    [55] G. Beyer and M. V. Bavel, Micro, Oct. (2002).
    [56] G. Q. Yu, B. K. Tay, S. P. Lau, K. Prasad and J. X. Gao, J. Phys. D: Appl. Phys., 36, 1355 (2003).
    [57] A. E. Kaloyeros, X. Chen, T. Stark, K. Kumar, S. C. Seo, G. G. Peterson, H. L. Frisch, B. Arkles and J. Sullivan, J. Electrochem. Soc., 146, 170 (1999).
    [58] R. Kro¨ger, M. Eizenberg, D. Cong, N. Yoshidab, L.Y. Chenb, S. Ramaswamib and D. Carl, Microelectron. Eng., 50, 375 (2000).
    [59] D. Edelstein, C. Uzoh, C. Cabral Jr., P. Dehaven, P. Buchwalter and A. Simon, Proc. IEEE International Intercon. Tech. Con, Piscataway, NJ, 9 (2001).
    [60] A. Brenner, J. Res. National Bar, Standard, 37, 1 (1946).
    [61] M. Paunovic, P. J. Bailey and R. G. Schad, J. Electrochem. Soc., 141, 1843 (1994).
    [62] V. M. Dubin and Y. Shacham-Diamand, J. Electrochem. Soc., 144, 898 (1997).
    [63] Y. Shacham-Diamand and S. Lopatin, Microelectron. Eng., 37/38, 77 (1997).
    [64] Y. Shacham-Diamand and V. M. Dubin, Microelectron. Eng., 33, 47 (1997).
    [65] Y. Shacham-Diamand and S. Lopatin, Electrochimica Acta, 44, 3639 (1999).
    [66] Y. Shacham-Diamand and Y. Sverdlov, Microelectron. Eng., 50, 525 (2000).
    [67] Y. Shacham-Diamand, Y. Sverdlov and N. Petrov, J. Electrochem. Soc., 148, C162 (2001).
    [68] A. Kohn, M. Eizenberg, Y. Shacham-Diamand and Y. Sverdlov, Mater. Sci. and Eng., A302, 18 (2001).
    [69] A. Kohn, M. Eizenberg, Y. Shacham-Diamand, B. Israel and Y. Sverdlov, Microelectron. Eng., 55, 297 (2001).
    [70] E. J. O’Sullivan, A. G. Schrott, M. Paunovic, C. J. Sambucetti, J. R. Marino, P. J. Bailey, S. Kaja and K. W. Semkow, IBM J. Res. Dev., 42, 607 (1998).
    [71] Y. Wu, C. C.Wan and Y. Y. Wang, J. Electron. Mater., 34, 541 (2005).
    [72] Y. Wu, C. C.Wan and Y. Y. Wang, PhD Thesis (2004).
    [73] S. Y. Chang, C. C.Wan and Y. Y. Wang, Master Thesis (2004).
    [74] S. M. Ho, S. M. Lian, K. M. Chen, J. P. Pan, T. H. Wang and A. Hung, IEEE Transactions on Components, Packaging, and Manufacturing Technology, 19, 202 (1996).
    [75] International Technology Roadmap for Semiconductor (2002).
    [76] J. A. Cunningham, Solid State Technology, Sep. (2003).
    [77] P. Singer, Semiconductor International, Oct., 44 (2005).
    [78] C. K. Hu, L. Gignac, R. Rosenberg, E. Liniger, J. Rubino and C. Sambucetti, Appl. Phys. Lett., 81(10), 1782 (2002).
    [79] T. Saito, T. Imai, J. Noguchi and M. Kubo, proc. IITC, 15 (2001).
    [80] J. R. Lloyd, Integrated Reliability Workshop, 32 (2002).
    [81] L. G. Gosset, Proc. IEEE IITC, 15 (2004).
    [82] S. Chhun, Microelectron. Eng., 82, 587 (2005).
    [83] S. Chhun, Microelectron. Eng., 76, 106 (2004).
    [84] R. D. Glodblatt, B. Agrawala, M. B. Anand and E. P. Barth, IEDD Tech. Dig., 261 (2000).
    [85] M. R. Baklanov, Proc. IEEE IITC, 187 (2004).
    [86] M. W. Lane, J. Appl. Phys., 93, 1417 (2002).
    [87] T. Mori, T. Fukada, Y. Toyada, M. Hasegawa and N. Mikami, Proc. IEEE IITC, 487 (1996).
    [88] H. Ashira, Proc. AMC, 595 (2005).
    [89] K. Takeda, K. Hinode, I. Oodake and H. Yamaguchi, Proc. IRPS, 36 (1998).
    [90] T. Saito, H. Ashihara and K. Ishikawa, IEEE Trans. Electron Dev., 51, 2129 (2004).
    [91] A. Kohn, J. Appl. Phys., 94, 3810 (2003).
    [92] A. Kohn, J. Appl. Phys., 94, 3015 (2003).
    [93] B. Lee, Semiconductor International, July, 95 (2004).
    [94] L. G. Gosset, Proceeding of AMC 2005, 587 (2006).
    [95] L. M. Michaelson, Proceeding of AMC 2005, 577 (2006).
    [96] C. K. Hu, Microelectron. Eng., 70, 406 (2003).
    [97] T. Ko, Proceeding of VLSI, 109 (2003).
    [98] C. K. Hu, R. Rosenberg and K. Y. Lee, Appl. Phys. Lett., 74, 2945 (1999) .
    [99] A. Kohn, M. Eizenberg and Y. Shacham-Diamand, Appl. Surf. Sci., 212-213, 367 (2003).
    [100] M. Yoshino, Y. Nonaka, J. Sasano, I. Matsuda, Y. Shacham-Diamand and T. Osaka, Electrochim. Acta, 51, 916 (2005).
    [101] Y. Sverdlov, V. Bogush, H. Einati and Y. Shacham-Diamand, J. Electrochem. Soc., 152, 631 (2005).
    [102] H. Einati, V. Bogush, Y. Sverdlov, Y. Rosenberg and Y. Shacham-Diamand, Microelectron. Eng., 82, 623 (2005).
    [103] T. Osaka, N. Takano, T. Kurokawa, T. Kaneko and K. Ueno, J. Electrochem. Soc., 149, 573 (2002).
    [104] T. Osaka, N. Takano, T. Kurokawa, T. Kaneko and K. Ueno, Surf. Coat. Technol., 169, 124 (2003).
    [105] M. Kim, T. Yokoshima and T. Osaka, J. Electrochem. Soc., 148, 753 (2001).
    [106] H. Nakano, T. Itabashi and H. Akahoshi, J. Electrochem. Soc., 152, 163 (2005).
    [107] Y. Shacham-Diamand, A. Zylberman, N. Petrov and Y. Sverdlov, Microelectron. Eng., 64, 315 (2002).
    [108] Osaka, N. Takano, T. Kurokawa, T. Kaneko and K. Ueno, J. Electrochem. Soc., 149, C573 (2002).
    [109] T. Osaka, H. Yamazaki and I. Saito, J. Electrochem. Soc., 136, 3418 (1989).
    [110] T. Saito, E. Sato, M. Matsuoka and C. Iwakura, J. Appl. Electrochem., 28, 559 (1998).
    [111] Y. Sverdlov and Y. Shacham-Diamand, Microelectron. Eng., 70, 512 (2003).
    [112] T. Osaka, K. Arai, N. Masubuchi, T. Tamazaki and T. Namikawa, Jpn. J. Appl. Phys., 28, 866 (1989).
    [113] I. Koiwa, M. Usudo and T. Osaka, J. Electrochem. Soc., 135, 1222 (1988).
    [114] E. Valove, S. Armyanov, A. Franquet, k. Petrov, D. Kovacheva, J. Dille, J. L. Delplancke, A. Hubin, O. Steenhaut and J. Vereecken, J. Electrochem. Soc., 151, C385 (2004).
    [115] R. C. Alkire and D. M. Kolb, Advances in Electrochemical Science and Engineering, Vol. 7, Wiley-VCH, New York, 227 (2001).
    [116] A. Brenner, Electrodeposition of alloys, Vol. 1-2, Academic Press, New York, 356 (1963).
    [117] E. J. Padlaha and D. Landolt, J. Electrochem. Soc., 144, 1672 (1997).
    [118] K. Huller, M. Sydow and G. Dietz, J. Magn. Mater., 53, 269 (1985).
    [119] W. L. Liu, S. H. Hsieh, T. K. Tsai and W. J. Chen, J. Electrochem. Soc., 151, C680 (2004).
    [120] S.Y. Chang, C.C. Wan, Y.Y. Wang, C.H. Shih, M.H. Tsai, S.L. Shue, C.H.
    Yu and M.S. Liang, Thin Solid Films, 515, 1107 (2006).
    [121] G. Mallory and J. Haidu, Editors, Electroless plating: Fundamental and Applications, AESF Publishing, Orlando, FL (1990).
    [122] N. Petrov, Y. Sverdlov and Y. Shacham-Diamand, J. Electrochem. Soc., 149, C187 (2001).
    [123] Y. Okinaka, Plating, 57, 914 (1970).
    [124] H. Nakai, T. Homma, I. Komatsu, A. Tamaki and T. Osaka, J. Phys. Chem. B, 105, 1701 (2001).
    [125] J. A. Gardiner and J. W. Collat, J. Am. Chem. Soc., 87, 1692 (1964).
    [126] R. L. Pecsok, J. Am. Chem. Soc., 75, 2862 (1953).
    [127] J. P. Elder, Electrochim. Acta, 7, 147 (1962).
    [128] A. Sargent and O. A. Sadik, Langmuir, 17, 2760 (2001).
    [129] F. Pearlstein and R. F. Weightman, J. Electrochem. Soc., 121, 1023 (1974).
    [130] I. Ohno and S. Haruyama, Surf. Tech., 13, 1 (1981).
    [131] G. Gaudiello and G. L. Ballard, IBM J. Res. Develop., 37, 107 (1993).
    [132] A. J. Bard and L. R. Faulkner, Electrochemical methods, John Willy,
    New York, (1980).
    [133] C. K. Hu, J. Electrochem. Soc., 149, G408 (2002).
    [134] T. Saito, J. Noguchi, M. Kubo, T. Imai and Y. Ito, Jpn. J. Appl. Phys., 43, 2447 (2004).
    [135] M. P. Stewart, F. Maya, D. V. Kosynkin and S. M. Dirk, J. Am. Chem. Soc., 126, 370 (2004).
    [136] C. Combellas, M. Delamar, F. Kanoufi, J. Pinson and F. I. Podvorica, Chem. Mater., 17, 3968 (2005).
    [137] A. Adenier, M. C. Bernard, M. M. Chehimi and E. Cabet-Deliry, J. Am. Chem. Soc., 123, 4541 (2001).
    [138] P. Allongue, M. Delamar and B. Desbat, J. Am. Chem. Soc., 119, 201 (1997).
    [139] C. Saby, B. Ortiz, G. Y. Champagne and D. Be’langer, Langmuir, 13, 6805 (1997).
    [140] A. Laforgue, T. Addou and D. Be’langer, Langmuir, 21, 6855 (2005).
    [141] J. Ghilane, M. Delamar, M. Guilloux-Viry, C. Lagrost, C. Mangeney and P. Hapiot, Langmuir, 21, 6422 (2005).
    [142] H. Zollinger, Diazo Chemistry I: Aromatic and Heteroaromatic Compounds, p.188, Weinheim (1994).
    [143] S. Patai, The Chemistry of Diazonium and Diazo Groups, p.286, John Wiley & Sons, Ltd., New York (1978).
    [144] C. Galli, Chem. Rev., 88, 765 (1988).
    [145] B. L. Hurley and R. L. McCreery, J. Electrochem. Soc., 15, B252 (2004).
    [146] R. M. Elofson and F. F. Gadallah, J. Org. Chem., 34, 854 (1969).
    [147] G. Socrates, Infrared and Raman Characteristic Group Frequencies, p. 86-166, John Wiley & Sons, Ltd., New York (2001).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE