研究生: |
陳士軒 |
---|---|
論文名稱: |
遞迴式循環圖G(2*n, 4)中相互獨立的漢米爾頓環路 |
指導教授: | 游素珍 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
南大校區系所調整院務中心 - 應用數學系所 應用數學系所(English) |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
中文關鍵詞: | 遞迴式循環圖 、漢米爾頓環路 、相互獨立的漢米爾頓環路 |
外文關鍵詞: | Recursive circulant graph, Hamiltonian cycle, Mutually independent hamiltonian cycles |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
遞迴式循環圖G(N, d)是Park和Chwa [14]在1994年提出的。G(N, d)是含有N個頂點且距離為d的乘羃的點相連而形成的循環圖。對於任意非負整數n,G(2*n, 4)是遞迴式循環圖的一個特殊子家族,擁有直徑和路徑組織等良好的特性,可以應用在多元網路的結構裡。本篇論文中,我們將探討G(2*n, 4)中相互獨立的漢米爾頓環路。
G(2*n, 4)和超立方體Qn有相同的維度n,但卻有較小的直徑[21]。當n屬於{1, 2, 3}時,Qn上有n-1條相互獨立的漢米爾頓環路;當n大於等於4時,則有n條相互獨立的漢米爾頓環路。由於G(2*n, 4)和Qn有許多類似的特性,例如G(2*n, 4)可以嵌入Qn中[15]。據此,我們將推論出G(2*n, 4)中相互獨立漢米爾頓環路的數目。在本篇論文中,我們證明了在G(2*n, 4)上,有n條相互獨立漢米的漢米爾頓環路。
The recursive circulant graphs G(N, d), have been introduced in 1994 [14], are circulant graphs with N nodes and with jumps of powers of d. The subfamily of the recursive circulant graphs of the form G(2*n, 4), for some nonnegative integer n, was also presented as a new topology for multicomputer networks because of its nice properties concerning their diameter and routing schemes, and so on.
In this paper, we study the mutually independent hamiltonian cycles of the recursive circulant graphs
G(2*n, 4). The recursive circulant graphs G(2*n, 4) and the hypercubes Qn have many similar properties. For examples,
G(2*n, 4) have the same degree as Qn of dimension n, but have a smaller diameter [21];G(2*n, 4) have the relationship with Qn in terms of embedding [15]. Furthermore, it has been shown that the numbers of the mutually independent hamiltonian cycles of Qn are
MIHC(Qn) = n-1 if n belongs to {1, 2, 3};
= n if n is bigger and equal to4.
Therefore, we would guess the numbers of the mutually independent hamiltonian cycles of the recursive circulant graphs G(2*n, 4), and then have verified the results that there are n mutually independent hamiltonian cycles in
G(2*n, 4), for n is bigger and equal to3.
[1] Daniel K. Biss, “Hamiltonian decomposition of
recursive circulant graphs,” Discrete Mathematics 214,
pp. 89-99, 2000.
[2] C.H. Chang, C.K. Lin, H.M. Huang, and L.H. Hsu, “The
super laceability of the hypercubes,” Information
Processing Letters Vol. 92, pp. 15-21, 2004.
[3] Y.C. Chen, C.H. Tsai, L.H. Hsu, and Jimmy J.M.Tan,“On
some super fault–tolerant hamiltonian graphs,”Applied
Mathematics and Computation Vol. 148, pp. 729-741, 2004.
[4] F.W. Cheng, “Fault-tolerant pancyclicity of recursive
circulant graphs,” M. S. Thesis,Institute of Computer
and Information Science, National Chiao Tung
University,Hsinchu, Taiwan, Republic of China, 2003.
[5] S.J. Curran, and J.A. Gallian, “Hamiltonian cycles and
paths in cayley graphs and digraphs – a survey,”
Discrete Mathematics 156, pp. 1-18, 1996.
[6] Guillaume Fertin, and Andre Raspaud, “Recognizing
recursive circulant graphs G(cd*m, d),” LaBRI U.M.R.
5800, Universite Bordeaux I 351 Cours de la Liberation,
F33405 Talence Cedex.
[7] Y.L. Hsieh, “Faulty hamiltoniancity and fault
hamiltonian connectivity of (n, k) star graphs,” M.S.
Thesis, Institute of Computer and Information Science,
National Chiao Tung University, Hsinchu, Taiwan,
Republic of China, 2002.
[8] H.C. Hsu, “Hamiltonian properties of star graph
families,” Ph.D & Information Science, National Chiao
Tung University, Taiwan, Republe of China, 2003.
[9] W.T. Huang, “Fault-tolerant hamiltonicity of twisted
cubes, crossed cubes, and mobius cubes,” Ph.D &
Information Science, National Chiao Tung University,
Taiwan, Republe of China, 2001.
[10] Mingchu Li, “Hamiltonian cycles in regular 3-
connected claw-free graphs,” Discrete Mathematics
156, pp. 171-196, 1996.
[11] C. Micheneau, “Disjoint hamiltonian cycles in
recursive circulant graphs,” Information Processing
Letters 61, pp. 259-264, 1997.
[12] J.H. Park, “Hamiltonian decomposition of recursive
circulants,” in Proc. 9th Interna- tional Symposium
on Algorithms and Computation ISAAC’98(LNCS#1533),
Taej- on, Korea, pp. 297-306, 1998.
[13] J.H. Park, and K.Y. Chwa, “Disjoint paths of bounded
length in recursive circulants G(2*m, 2*k),” in Proc.
25th KISS Spring Conference, pp. 685-687, 1998.
[14] J.H. Park, and K.Y. Chwa, “Recursive circulant: a new
topology for multicomputer networks,” Proc. Internat.
Symp. Parallel Architectures, Algorithms and Networks
(ISPAN’94), Japan (IEEE Press, New York), pp. 73-80,
1994.
[15] J.H. Park, and K.Y. Chwa, “Recursive circulants and
their embeddings among hyper- cubes.” Manuscript.
Submitted for Publication.
[16] J.H. Park, and H.C. Kim, “Dihamiltonian decomposition
of regular graphs with degree Three,” Submitted for
Publication.
[17] C.M. Sun, C.K. Lin, H.M. Huang, and L.H.Hsu,“Mutually
independent hamiltonian paths and cycles in
hypercubes,”Journal of Interconnection Networks Vol.
7, pp. 235-255, 2006.
[18] C.H. Tsai, “Fault-tolerant hamiltonian properties on
butterflies, recursive circulant graphs, and
hypercubes,” Ph.D & Information Science, National
Chiao Tung University, Taiwan, Republe of China, 2002.
[19] C.H. Tsai, Y.C. Chen, Jimmy J.M. Tan, and L.H.
Hsu,“Hamiltonian decompositions of recursive
circulant graphs, ” Proceedings of 3rd World
Multiconference on Systemics, Cybernetics, and
Informatics and 5th International Conference on
Information Systems Analysis and Synthesis, Vol. 5,
pp. 446-449, 1999.
[20] C.H. Tsai, Jimmy J.M. Tan, Y.C. Chuang, and L.H.
Hsu,“Hamiltonian properties of faulty recursive
circulant graphs,” J. Interconnection Networks 3, pp.
273-289, 2002.
[21] C.H. Tsai, Jimmy J.M. Tan, and L.H. Hsu, “The super-
connected property of recursive circulant graphs,”
Information Processing Letters 91, pp. 293-298, 2004.
[22] Qi-Fan Yang, Rainer E. Burkard, Eranda Cela, and
Gerhard J. Woeginger, “Hamiltonian cycles in
circulant digraphs with two stripes,” OPTIMIERUNG und
KONTROLLE, Bericht Nr. 20 – Marz, 1995.
[23] 徐力行, “沒有數字的數學,” 天下遠見出版股份有限公司, 2003.