研究生: |
胡恆達 Herng-Dar Hwu |
---|---|
論文名稱: |
鹼可溶樹脂在乳化聚合之反應行為研究 Reaction Behavior Studies of Alkali Soluble Resin as a surfactant in the emulsion polymerization |
指導教授: |
李育德
Yu-Der Lee |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 中文 |
論文頁數: | 135 |
中文關鍵詞: | 高分子型乳化劑 、鹼可溶樹脂 、乳化聚合 |
外文關鍵詞: | Polymeric Surfactant, Alkali Soluble Resin, Emulsion Polymerization |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是以鹼可溶壓本研究主要是以鹼可溶壓克力樹脂為高分子型乳化劑,針對SM、BMA、BA等不同單體行乳化聚合反應。研究中藉由批式反應進行乳化聚合動力學研究,並結合動力學分析、表面張力分析和接枝反應分析以瞭解本系統之反應行為。
本研究首先針對鹼可溶樹脂結構進行分析,確認其結構為(SM)0.34 (AMS)0.28 (AA)0.38 ,並透過其水溶液界面特性分析,可以確認ASR在水溶液中形成微泡般的凝聚物,而其臨界濃度為1g/L至9.3g/L。實驗數據亦顯示ASR對於SM、MMA、EMA和BMA可以有效的穩定乳液,而且ASR除了吸附在乳液粒子上,並與單體發生接枝反應。另外經動力學分析發現,以ASR為乳化劑其對反應速率有Retarding效應。而一般乳化聚合反應的第二階段在本系統中並不存在,主要是因為乳液成核的階段由反應開始便一直進行,直到油滴消失為止。而乳液粒子數與ASR濃度成0.309次方關係,與起始劑濃度則成0.515次方關係。
同時本研究在比較不同單體對於反應速率的影響,亦發現乳液粒子中的單體濃度和乳液粒徑大小會影響乳液平均自由基數(n)的大小,乳液粒徑愈小或單體濃度愈高者會使得自由基容易擴散出粒子,因此在粒子中單體濃度低之BMA 的n會較其他單體為高,同時實驗數據亦顯示接枝反應除了會受ASR或起始劑濃度影響外,其受單體影響為最大,親油性單體如BMA,SM 的接枝反應較親水性單體如MMA,EMA為高,其原因應是單體成核機制不同所造成。
In this study, alkali soluble resin (ASR) was evaluated as a surfactant in emulsion polymerization of SM, MMA, EMA, BMA, and BA, respectively. Batch reaction was used to evaluate the reaction behaviors. Kinetic analysis, surface tension and alkali separation methods were employed to study the reaction behaviors.
The structure of ASR was determined by using 13C NMR and pyrolyzes GC and the ASR structure was (SM)0.34 (AMS)0.28 (AA)0.38. The critical aggregation concentration of neutralized ASR was broad from 1g/L to 9.3g/L by measuring the surface tension of ASR aqueous solution. The results were found that ASR can effectively stabilize the monomer such as MMA, EMA, BMA and SM. The ASR not only plays a stabilizer in the emulsion polymerization but also grafts onto the polymer to retard the reaction rate. The retarding effect of ASR was also observed in this reaction, which formed a barrier layer around the particle and depressed the radical number in the particle. The interval II, growth of polymer particles in the absence of micelles, does not exist in this system because the particle nucleation period lasts until the disappearance of the droplets. The power dependencies of particle number on the ASR concentration and the initiator concentration are 0.309 and 0.515, respectively. It reconfirms that the coagulative nucleation mechanism and the longer nucleation period do exist by using ASR as the surfactant.
Kinetic analysis indicated that the saturated monomer concentration within particle and the particle size have dominant effects on the average radical number per particle. The decreases of particle size or the increases of monomer concentration within the particle enhance the radical diffuse into the continuous phase and reduce the average number of radicals per particle. The above results also indicate that the grafting reaction onto ASR is proportional to the concentration of ASR and initiator. But the water solubility of monomer is the major factor that affects the grafting reaction. Low water solubility monomers favor micellar nucleation and enhance the grafting reaction onto ASR.
1.Chern C.S. and Chen Y.C., Poymer Journal, Vol. 28, No7, 627-632(1996)
2.Tanrisever T. etc., Journal of Applied Polymer Science, Vol. 61, 485-493(1996).
3.иヤユ⑦ンЁロю, 1995, 10, 1, Vol. 24, No17, 15-28
4.趙承堔, “界面科學基礎”, 復文書局, 1984
5. Boury A., European Coating Journal, 822,824,826, (11), 1996
6. Magallanes Gonazalez G.S., Dimonie V.L., Sudol E.D., Yue H.J., Klein A., Journal of Polymer Science, Part A: Polymer Chemistry, V01.34, 849-862(1996)
7. Lockhead R.Y., Cosmetics & Toiletries, Vol.107, Sept. 1992, P.131
8. Pijrma I, Polymeric Surfactants, Marcel Pekker Inc.
9. U.S. Patent 4,414,370, 1983
10. U.S. Patent 4,529,787, 1985
11. Eliseeva V.I., Ivanchev S.S., Kuchanov S.I., Lebedev A.V., “Emulsion Polymerization and its applications in Industry”, Consultants Bureau, New York, 1981
12. Derjaguin B.V., Landan L., Acta Physicochemical XIV: 633, 1941
13. Overbeek J., Verwey E., “Theory of the Stability of Lyophobic Colloids”, Elevier, Amsterdam, 1948
14. Napper D.H., “Polymeric Stabilization of Colloidal Dispersions”, Academic Press, London, 1983
15. Evans R. and Nappen D.H., J. Colloid Interface Science, 52, 269, 1971
16. Napper D.H., Netschey A., J. Colloid Interface Science., 37, 528, 1971
17. Asakura S., Oosawa F., J. Chem. Phys., 22,1255,1954
18. Asakura S., Oosawa F., J. Chem. Phys., 33,183,1958
19. Lochhead R.Y., Cosmetics & Toiletries, Vol.107, 131,Sep., 1992
20. Matens C.R., “Water Borne Coatings”, Van Nostrand Reinhold Company, New York, N.Y.1987
21. Daniels Eric.s., “Polymer Latex Preparation Characterization and Application”, American Chemical Society Symposium Series 492, April 14-19, 1991
22. Odian G., “Principles of Polymerization”, John Wiley & Sons Inc., 1991
23. Rosen M.J., “Surfactant’s and Interfacial Phenomena “, John Wiley & Sons Inc., 1978
24. Gardon, J.L., “Emulsion Polymerization” Chap.6 in “Polymerization Process”, C.E. Schild Knecht Ed., Wiley Inter science, New York, 1977
25. Smith W.V. and Ewart R.F., J. Chem. Phys., 16, 592(1948)
26. Hansen W.V., Vgelstad J., J. Polymer Sci. Polymer Chem. Ed., 1953, 16, 1978
27. Hansen F.K., Vgelstad J., J. Polymer Sc. Polymer Chem. Ed., 3047, 17, 1979
28. Hansen F.K., Vgelstad J., J. Polymer Sc. Polymer Chem. 3047, 17, 1979.
29. Hansen F.K., Vgelstad J., J. Polymer Sc. Polymer Chem. Ed., 3069, 17, 1979
30. Fitch R.M., Tsai C. H., In Polymer Colloids, Fitch Ed., Plenum: New York, 1971
31. Ugelstad J., Hansen F. K., Rubber Chem. Technol.1976, 49, 536
32. Feeney P.J., Napper D.H., Gilbert R.G., Macromolecules 1984, 17:2520.
33.U.S. Patent 1,107,249, 1965
34.U.S. Patent 4,839,413, 1989
35. Kerssen G.W., Paint & Resin International Issue 3, 1996
36. Ban Van. Leeuwen, PPCJ, Feb. 1996
37. Lee D.Y., Kim J.H., J. Appl. Poly. Sci., 69, 543-550(1998)
38. Davis T.P., O’Driscoll K.F., Piton M.C., Winnik M.A., Macromolecules 1990, 23: 2113.
39. Brandrup A., Immergut E.H., Polymer Handbook, 3rd ed., New York:Wiley Interscience, 1989.
40. Kemmere M.F., Meuldijk J., Drinkenburg AAH, German A.I., Polymer Reaction Engineering, 1998, 6(3ƀ), 243. 18.M.
41.Deady A., Mau W. H., Moad G., Spurling T. H., Makromol., Chem., 194, 1691, (1993)
42. Nabuurs T., Baijards R. A., German A. L., Progress in Organic Coatings, 27, 163, (1996)
43. Pascal P., Winnik M.A,, Napper D.H., Gilbert R.G.., Makromol. Chem. Rapid Comm. 1993, 14:213.
44. Halnan L.F., Napper D.H., Gilbert R.G., J. Chem. Soc. Faraday Trans. 1. 1984, 80: 2851
45. Hawkett B.S., Napper D.H., Gilbert R.G., J. Chem. Soc. Faraday Trans. l. 1980, 76:132316.
46. Harkins W.D.,. J. Am. Chem. Soc. 1947, 69:1428.
47. Choi Y.T., El-aasser M.S., Sudol E.D., Vanderhoff J.W., J. Polym. Sci.: Poly. Chem. 1985, 23:2973.
48.Chang Y.H., Lee Y.D., Polymer 1999, 40:5929.
49. Roe C.P., Ind. Eng. Chem. 1968, 60:20.