簡易檢索 / 詳目顯示

研究生: 蔡宗霖
Tsai, Tsung-Lin
論文名稱: 在特徵簇上卡當對和的不動點集
The Fixed Point Set of a Cartan Involution on the Character Variety
指導教授: 何南國
Ho, Nan-Kuo
口試委員: 吳思曄
Wu, Si-Ye
夏杼
Xia, Eugene Zhu
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 38
中文關鍵詞: 特徵簇卡當對和不動點集
外文關鍵詞: Character Variety, Cartan Involution, Fixed Point Set
相關次數: 點閱:43下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們首先描述從環面的基本群到SL(2,C)的reductive representation。接著,考慮在 character variety上的involution,並且研究其不動點集。


    We describe the reductive homomorphisms from the fundamental group of a torus of genus 1 to SL(2,C). We consider an involution on the character variety induced by a Cartan involution of SL(2,C) and investigate its fixed point set.

    Abstract Contents 1 Introduction------------------------------------1 2 The moduli space of flat connections-----------3 3 Character variety-------------------------------17 4 The isomorphism between the two models------20 5 Cartan involutions on the character variety------29 Bibliography--------------------------------------37

    [1] M. F. Atiyah and R. Bott. The Yang-Mills Equations over Riemann Sur- faces. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 308(1505):523–615, 1983.
    [2] R. Bott and L. W. Tu. Differential forms in algebraic topology. Springer New York, 1982.
    [3] O. Forster. Lectures on Riemann Surfaces. Springer New York, 1981.
    [4] W. M. Goldman. The symplectic nature of fundamental groups of surfaces.
    Advances in Mathematics, 54(2):200–225, 1984.
    [5] W. M. Goldman and J. J. Millson. The deformation theory of represen- tations of fundamental groups of compact K ̈ahler manifolds. Publications Math ́ematiques de l’IHE ́S, 67:43–96, 1988.
    [6] A. Hatcher. Algebraic topology. Cambridge University Press, 2002.
    [7] N. J. Hitchin. The Self-Duality Equations on a Riemann Surface. Proceedings
    of the London Mathematical Society, s3-55(1):59–126, 1987.
    [8] N.-K. Ho, L. C. Jeffrey, K. D. Nguyen, and E. Z. Xia. The SU(2)-character variety of the closed surface of genus 2. Geometriae Dedicata, 192(2):171–187, 2018.
    [9] N.-K. Ho, G. Wilkin, and S. Wu. Conditions of smoothness of moduli spaces of flat connections and of character varieties. Mathematische Zeitschrift, 293(1):1–23, 2019.
    [10] A. W. Knapp. Lie groups beyond an introduction. Birkh ̈auser Boston, MA, 2002.
    [11] S. Kobayashi and K. NomiZu. Foundations of differential geometry volume I. John Wiley and Sons, 1963.
    [12] J. Milnor, M. Spivak, and R. Wells. Morse Theory. Princeton University Press, 1969.
    [13] R. W. Richardson. Conjugacy classes of n-tuples in Lie algebras and algebraic groups. Duke Mathematical Journal, 57(1):1–35, 1988.
    [14] A. S. Sikora. Character varieties. Transactions of the American Mathematical Society, 364(10):5173–5208, 2012.

    QR CODE