研究生: |
李思儀 Lee, Szu-Yi |
---|---|
論文名稱: |
探討槲皮素和1,2,3,4,6-O-五沒食子醯葡萄糖在乳癌細胞株中的協同效果 The Effect of Quercetin and 1,2,3,4,6-penta-O-galloyl-β-D-glucose (5GG) in Breast Cancer Cells. |
指導教授: |
黃琇珍
Hsiu-Chen Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 118 |
中文關鍵詞: | 槲皮素 、1,2,3,4,6-O-五沒食子醯 葡萄糖 、乳癌細胞 |
外文關鍵詞: | Quercetin, 1,2,3,4,6-penta-O-galloyl-β-D-glucose, Breast Cancer |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
聯合國世界衛生組織指出乳癌是目前全球女性發生率最高的癌症;但是現行的乳癌化療藥物仍有副作用的疑慮,而且對於三陰性的乳癌細胞尚未有有效藥物。近來有學者提出補充和替代醫學(CAM);希望藉由天然物加強藥物效果,降低副作用,甚至於取代藥物。
有文獻研究天然物-黃酮類化合物抑制癌症的作用機制,並證明quercetin (Que)和沒食子酰基抑制癌症的機制不同。因此我們選用了Que和三種沒食子醯基結構相似物:gallic acid(GA)、(-)-epigallocatechin gallate (EGCG)和1,2,3,4,6-penta-O-galloyl-β-D-Glucose(5GG)在乳癌細胞株中併用,研究是否更有抑制癌細胞生長效果。我們做了細胞存活率、癌化程度、細胞週期停滯、細胞凋亡等相關實驗,皆證實在三陰性的MDA-MB-231細胞株中,Que併用EGCG或5GG皆有協同抑制癌細胞的效果;其中以Que併用5GG抑制癌細胞存活率的效果更為顯著,我們推測可能與5GG含有較多沒食子醯基結構有關。Que併用5GG於短時間二十四小時促使MDA-MB-231細胞細胞週期停滯、長時間四十八小時則細胞凋亡;且由實驗證明能抑制cullin 1、CDK4與SKP2蛋白質。而先前研究得知SKP2可以調控細胞週期的S期,且近來研究亦指出SKP2可能跟細胞凋亡有關,所以我們針對SKP2接續研究細胞停滯與凋亡的相關機制。我們抑制SKP2的表現後,發現因此而使MDA-MB-231細胞產生染色質皺縮、活化細胞凋亡相關蛋白、DNA片斷化等細胞凋亡現象;由此可證SKP2不只可以調控細胞週期亦能調控細胞凋亡。
由本實驗證明Que併用5GG能有效抑制MDA-MB-231細胞增生,我們希望未來能進一步地研究Que併用5GG對於癌症轉移、體內試驗的效果,更甚至併用或是替代臨床藥物。
Breast cancer is the most universal cancer in women, but the medications of breast cancer usually cause serious side effects and is no effective treatment for triple-negative breast cancer. Therefore, we wanted to use complementary and alternative medicine (CAM) for reducing the side effects and improving breast cancer treatment. Previous studies showed that the flavonoids quercetin (Que) was a natural product and could inhibit cancer cell growth and the anti-cancer mechanisms of Que was different from galloyl moiety structural analogs. For the reason that we wanted to examine the effect of breast cancer cells co-treated with Que plus GA, EGCG, or 5GG respectively. We found that Que combined with 5GG was most effective in inhibiting triple-negative breast cancer, MDA-BM-231, cell growth.
We discovered that combined treatment with Que and 5GG induced cell cycle arrest and apoptosis at different time points, and decreased the protein expressions of cullin 1, CDK4, and SKP2. After SKP2 siRNA transfection for 48 hours, MDA-MB-231 cells showed more apoptotic cells. It has been known that Skp2 plays an important role in regulating G1–S-phase progression. In the present study, we conjectured that RNAi knockdown of SKP2 not only induced cell cycle arrest but also induced apoptosis in MDA-MB-231 cells. Additionally, phosphorylated AKT expression was present at low levels in MDA-MB-231 co-treated with Que and 5GG. We suggested that co-treated with Que and 5GG inhibited MDA-MB-231 cells growth through suppression of the PI3K/Akt pathway. Thus, the combination of Que and 5GG warrants further study as a potential treatment for breast cancer.
1. 台灣立報, 2011-10-10, 史倩玲 http://www.lihpao.com/?action-viewnews-itemid-111541
2. 經濟日報, 2010-08-12,王慰祖 http://shiehbaby.pixnet.net/blog/post/25444769-%E5%8C%97%E5%B8%82%E5%A9%A6%E5%A5%B3%E4%B9%B3%E7%99%8C%E7%99%BC%E7%94%9F%E7%8E%87-%E4%BA%9E%E6%B4%B2%E7%AC%AC%E4%B8%80%E9%AB%98
3. Nomura M, Takahashi T, Nagata N, Tsutsumi K, Kobayashi S, et al. (2008) Inhibitory mechanisms of flavonoids on insulin-stimulated glucose uptake in MC3T3-G2/PA6 adipose cells. Biol Pharm Bull 31: 1403-1409.
4. Forus A, Sorlie T, Borresen-Dale AL, Myklebost O (2001) [Microarray technology--potential in cancer research]. Tidsskr Nor Laegeforen 121: 2498-2503.
5. Geyer FC, Rodrigues DN, Weigelt B, Reis-Filho JS (2012) Molecular classification of estrogen receptor-positive/luminal breast cancers. Adv Anat Pathol 19: 39-53.
6. Colombo PE, Milanezi F, Weigelt B, Reis-Filho JS (2011) Microarrays in the 2010s: the contribution of microarray-based gene expression profiling to breast cancer classification, prognostication and prediction. Breast Cancer Res 13: 212.
7. Leong AS, Zhuang Z (2011) The changing role of pathology in breast cancer diagnosis and treatment. Pathobiology 78: 99-114.
8. Zheng WQ, Zheng JM, Ma R, Meng FF, Ni CR (2005) Relationship between levels of Skp2 and P27 in breast carcinomas and possible role of Skp2 as targeted therapy. Steroids 70: 770-774.
9. Demetrick DJ, Matsumoto S, Hannon GJ, Okamoto K, Xiong Y, et al. (1995) Chromosomal mapping of the genes for the human cell cycle proteins cyclin C (CCNC), cyclin E (CCNE), p21 (CDKN1) and KAP (CDKN3). Cytogenet Cell Genet 69: 190-192.
10. Schulman BA, Carrano AC, Jeffrey PD, Bowen Z, Kinnucan ER, et al. (2000) Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature 408: 381-386.
11. Gstaiger M, Jordan R, Lim M, Catzavelos C, Mestan J, et al. (2001) Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci U S A 98: 5043-5048.
12. Nakayama KI, Hatakeyama S, Nakayama K (2001) Regulation of the cell cycle at the G1-S transition by proteolysis of cyclin E and p27Kip1. Biochem Biophys Res Commun 282: 853-860.
13. Imaki H, Nakayama K, Delehouzee S, Handa H, Kitagawa M, et al. (2003) Cell cycle-dependent regulation of the Skp2 promoter by GA-binding protein. Cancer Res 63: 4607-4613.
14. Carrano AC, Pagano M (2001) Role of the F-box protein Skp2 in adhesion-dependent cell cycle progression. J Cell Biol 153: 1381-1390.
15. Lee EK, Kim DG, Kim JS, Yoon Y (2011) Cell-cycle regulator Cks1 promotes hepatocellular carcinoma by supporting NF-kappaB-dependent expression of interleukin-8. Cancer Res 71: 6827-6835.
16. Schneider G, Saur D, Siveke JT, Fritsch R, Greten FR, et al. (2006) IKKalpha controls p52/RelB at the skp2 gene promoter to regulate G1- to S-phase progression. EMBO J 25: 3801-3812.
17. Barre B, Perkins ND (2007) A cell cycle regulatory network controlling NF-kappaB subunit activity and function. EMBO J 26: 4841-4855.
18. Kim SY, Herbst A, Tworkowski KA, Salghetti SE, Tansey WP (2003) Skp2 regulates Myc protein stability and activity. Mol Cell 11: 1177-1188.
19. Barre B, Perkins ND (2010) The Skp2 promoter integrates signaling through the NF-kappaB, p53, and Akt/GSK3beta pathways to regulate autophagy and apoptosis. Mol Cell 38: 524-538.
20. Wei W, Ayad NG, Wan Y, Zhang GJ, Kirschner MW, et al. (2004) Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428: 194-198.
21. Amati B, Vlach J (1999) Kip1 meets SKP2: new links in cell-cycle control. Nat Cell Biol 1: E91-93.
22. Ganoth D, Bornstein G, Ko TK, Larsen B, Tyers M, et al. (2001) The cell-cycle regulatory protein Cks1 is required for SCF(Skp2)-mediated ubiquitinylation of p27. Nat Cell Biol 3: 321-324.
23. Garriga J, Bhattacharya S, Calbo J, Marshall RM, Truongcao M, et al. (2003) CDK9 is constitutively expressed throughout the cell cycle, and its steady-state expression is independent of SKP2. Mol Cell Biol 23: 5165-5173.
24. Ji P, Jiang H, Rekhtman K, Bloom J, Ichetovkin M, et al. (2004) An Rb-Skp2-p27 pathway mediates acute cell cycle inhibition by Rb and is retained in a partial-penetrance Rb mutant. Mol Cell 16: 47-58.
25. Yokoi S, Yasui K, Iizasa T, Takahashi T, Fujisawa T, et al. (2003) Down-regulation of SKP2 induces apoptosis in lung-cancer cells. Cancer Sci 94: 344-349.
26. Lee SH, McCormick F (2005) Downregulation of Skp2 and p27/Kip1 synergistically induces apoptosis in T98G glioblastoma cells. J Mol Med (Berl) 83: 296-307.
27. Harada K, Supriatno, Kawashima Y, Itashiki Y, Yoshida H, et al. (2005) Down-regulation of S-phase kinase associated protein 2 (Skp2) induces apoptosis in oral cancer cells. Oral Oncol 41: 623-630.
28. Kitagawa M, Lee SH, McCormick F (2008) Skp2 suppresses p53-dependent apoptosis by inhibiting p300. Mol Cell 29: 217-231.
29. Peng L, Xu Z, Zhou Y, Yang T, Liang ZQ, et al. (2010) [Effect of rosiglitazone on cells cycle, apoptosis and expression of Skp2 and p27Kip1 in hepatocellular carcinoma cell line]. Zhonghua Gan Zang Bing Za Zhi 18: 148-149.
30. Yang G, Ayala G, De Marzo A, Tian W, Frolov A, et al. (2002) Elevated Skp2 protein expression in human prostate cancer: association with loss of the cyclin-dependent kinase inhibitor p27 and PTEN and with reduced recurrence-free survival. Clin Cancer Res 8: 3419-3426.
31. Zheng J, Yang X, Harrell JM, Ryzhikov S, Shim EH, et al. (2002) CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol Cell 10: 1519-1526.
32. Wu G, Xu G, Schulman BA, Jeffrey PD, Harper JW, et al. (2003) Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. Mol Cell 11: 1445-1456.
33. Lamson DW, Brignall MS (2000) Antioxidants and cancer, part 3: quercetin. Altern Med Rev 5: 196-208.
34. Ranelletti FO, Maggiano N, Serra FG, Ricci R, Larocca LM, et al. (2000) Quercetin inhibits p21-RAS expression in human colon cancer cell lines and in primary colorectal tumors. Int J Cancer 85: 438-445.
35. Avila MA, Velasco JA, Cansado J, Notario V (1994) Quercetin mediates the down-regulation of mutant p53 in the human breast cancer cell line MDA-MB468. Cancer Res 54: 2424-2428.
36. Scambia G, Panici PB, Ranelletti FO, Ferrandina G, De Vincenzo R, et al. (1994) Quercetin enhances transforming growth factor beta 1 secretion by human ovarian cancer cells. Int J Cancer 57: 211-215.
37. Scambia G, Ranelletti FO, Panici PB, Piantelli M, De Vincenzo R, et al. (1993) Quercetin induces type-II estrogen-binding sites in estrogen-receptor-negative (MDA-MB231) and estrogen-receptor-positive (MCF-7) human breast-cancer cell lines. Int J Cancer 54: 462-466.
38. Xing N, Chen Y, Mitchell SH, Young CY (2001) Quercetin inhibits the expression and function of the androgen receptor in LNCaP prostate cancer cells. Carcinogenesis 22: 409-414.
39. Yoshida M, Yamamoto M, Nikaido T (1992) Quercetin arrests human leukemic T-cells in late G1 phase of the cell cycle. Cancer Res 52: 6676-6681.
40. Ranelletti FO, Ricci R, Larocca LM, Maggiano N, Capelli A, et al. (1992) Growth-inhibitory effect of quercetin and presence of type-II estrogen-binding sites in human colon-cancer cell lines and primary colorectal tumors. Int J Cancer 50: 486-492.
41. Mu C, Jia P, Yan Z, Liu X, Li X, et al. (2007) Quercetin induces cell cycle G1 arrest through elevating Cdk inhibitors p21 and p27 in human hepatoma cell line (HepG2). Methods Find Exp Clin Pharmacol 29: 179-183.
42. Choi EJ, Bae SM, Ahn WS (2008) Antiproliferative effects of quercetin through cell cycle arrest and apoptosis in human breast cancer MDA-MB-453 cells. Arch Pharm Res 31: 1281-1285.
43. Wei YQ, Zhao X, Kariya Y, Fukata H, Teshigawara K, et al. (1994) Induction of apoptosis by quercetin: involvement of heat shock protein. Cancer Res 54: 4952-4957.
44. Xiao D, Zhu SP, Gu ZL (1997) Quercetin induced apoptosis in human leukemia HL-60 cells. Zhongguo Yao Li Xue Bao 18: 280-283.
45. Richter M, Ebermann R, Marian B (1999) Quercetin-induced apoptosis in colorectal tumor cells: possible role of EGF receptor signaling. Nutr Cancer 34: 88-99.
46. Jakubowicz-Gil J, Rzymowska J, Gawron A (2002) Quercetin, apoptosis, heat shock. Biochem Pharmacol 64: 1591-1595.
47. Choi JA, Kim JY, Lee JY, Kang CM, Kwon HJ, et al. (2001) Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int J Oncol 19: 837-844.
48. Mertens-Talcott SU, Percival SS (2005) Ellagic acid and quercetin interact synergistically with resveratrol in the induction of apoptosis and cause transient cell cycle arrest in human leukemia cells. Cancer Lett 218: 141-151.
49. Salucci M, Stivala LA, Maiani G, Bugianesi R, Vannini V (2002) Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2). Br J Cancer 86: 1645-1651.
50. Ohno Y, Fukuda K, Takemura G, Toyota M, Watanabe M, et al. (1999) Induction of apoptosis by gallic acid in lung cancer cells. Anticancer Drugs 10: 845-851.
51. Savi LA, Leal PC, Vieira TO, Rosso R, Nunes RJ, et al. (2005) Evaluation of anti-herpetic and antioxidant activities, and cytotoxic and genotoxic effects of synthetic alkyl-esters of gallic acid. Arzneimittelforschung 55: 66-75.
52. Valcic S, Muders A, Jacobsen NE, Liebler DC, Timmermann BN (1999) Antioxidant chemistry of green tea catechins. Identification of products of the reaction of (-)-epigallocatechin gallate with peroxyl radicals. Chem Res Toxicol 12: 382-386.
53. Valcic S, Burr JA, Timmermann BN, Liebler DC (2000) Antioxidant chemistry of green tea catechins. New oxidation products of (-)-epigallocatechin gallate and (-)-epigallocatechin from their reactions with peroxyl radicals. Chem Res Toxicol 13: 801-810.
54. Fiala ES, Sodum RS, Bhattacharya M, Li H (1996) (-)-Epigallocatechin gallate, a polyphenolic tea antioxidant, inhibits peroxynitrite-mediated formation of 8-oxodeoxyguanosine and 3-nitrotyrosine. Experientia 52: 922-926.
55. Huang HC, Lin CL, Lin JK (2011) 1,2,3,4,6-penta-O-galloyl-beta-D-glucose, quercetin, curcumin and lycopene induce cell-cycle arrest in MDA-MB-231 and BT474 cells through downregulation of Skp2 protein. J Agric Food Chem 59: 6765-6775.
56. Bar-On O, Shapira M, Hershko DD (2007) Differential effects of doxorubicin treatment on cell cycle arrest and Skp2 expression in breast cancer cells. Anticancer Drugs 18: 1113-1121.
57. Gokulakrisnan A, Vinayagam MM, Rahman LA, Thirunavukkarasu C (2010) Attenuation of cardiac oxidative stress by (-)-epigallocatechin-gallate (EGCG) in CS exposed rats. Biomed Pharmacother.
58. Gokulakrisnan A, Jayachandran Dare B, Thirunavukkarasu C (2011) Attenuation of the cardiac inflammatory changes and lipid anomalies by (-)-epigallocatechin-gallate in cigarette smoke-exposed rats. Mol Cell Biochem 354: 1-10.
59. Song EK, Hur H, Han MK (2003) Epigallocatechin gallate prevents autoimmune diabetes induced by multiple low doses of streptozotocin in mice. Arch Pharm Res 26: 559-563.
60. Wu CH, Wu CF, Huang HW, Jao YC, Yen GC (2009) Naturally occurring flavonoids attenuate high glucose-induced expression of proinflammatory cytokines in human monocytic THP-1 cells. Mol Nutr Food Res 53: 984-995.
61. Harakeh S, Abu-El-Ardat K, Diab-Assaf M, Niedzwiecki A, El-Sabban M, et al. (2008) Epigallocatechin-3-gallate induces apoptosis and cell cycle arrest in HTLV-1-positive and -negative leukemia cells. Med Oncol 25: 30-39.
62. Chan CY, Wei L, Castro-Munozledo F, Koo WL (2011) (-)-Epigallocatechin-3-gallate blocks 3T3-L1 adipose conversion by inhibition of cell proliferation and suppression of adipose phenotype expression. Life Sci 89: 779-785.
63. Chen YK, Cheung C, Reuhl KR, Liu AB, Lee MJ, et al. (2011) Effects of green tea polyphenol (-)-epigallocatechin-3-gallate on newly developed high-fat/Western-style diet-induced obesity and metabolic syndrome in mice. J Agric Food Chem 59: 11862-11871.
64. Ren TN, Wang JS, He YM, Xu CL, Wang SZ, et al. (2011) Effects of SMYD3 over-expression on cell cycle acceleration and cell proliferation in MDA-MB-231 human breast cancer cells. Med Oncol 28 Suppl 1: S91-98.
65. Jung E, Byun S, Kim S, Kim M, Park D, et al. (2012) Isomenthone protects human dermal fibroblasts from TNF-alpha-induced death possibly by preventing activation of JNK and p38 MAPK. Food Chem Toxicol.
66. Tang SN, Fu J, Shankar S, Srivastava RK (2012) EGCG enhances the therapeutic potential of gemcitabine and CP690550 by inhibiting STAT3 signaling pathway in human pancreatic cancer. PLoS One 7: e31067.
67. Narotzki B, Reznick AZ, Aizenbud D, Levy Y (2012) Green tea: a promising natural product in oral health. Arch Oral Biol 57: 429-435.
68. Kanwar J, Taskeen M, Mohammad I, Huo C, Chan TH, et al. (2012) Recent advances on tea polyphenols. Front Biosci (Elite Ed) 4: 111-131.
69. Li Y, Kim J, Li J, Liu F, Liu X, et al. (2005) Natural anti-diabetic compound 1,2,3,4,6-penta-O-galloyl-D-glucopyranose binds to insulin receptor and activates insulin-mediated glucose transport signaling pathway. Biochem Biophys Res Commun 336: 430-437.
70. Piao X, Piao XL, Kim HY, Cho EJ (2008) Antioxidative activity of geranium (Pelargonium inquinans Ait) and its active component, 1,2,3,4,6-penta-O-galloyl-beta-D-glucose. Phytother Res 22: 534-538.
71. Fujiwara H, Tabuchi M, Yamaguchi T, Iwasaki K, Furukawa K, et al. (2009) A traditional medicinal herb Paeonia suffruticosa and its active constituent 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranose have potent anti-aggregation effects on Alzheimer's amyloid beta proteins in vitro and in vivo. J Neurochem 109: 1648-1657.
72. Ryu HG, Jeong SJ, Kwon HY, Lee HJ, Lee EO, et al. (2012) Penta-O-galloyl-beta-D-glucose attenuates cisplatin-induced nephrotoxicity via reactive oxygen species reduction in renal epithelial cells and enhances antitumor activity in Caki-2 renal cancer cells. Toxicol In Vitro 26: 206-214.
73. Cao Y, Evans SC, Soans E, Malki A, Liu Y, et al. (2011) Insulin receptor signaling activated by penta-O-galloyl-alpha-D: -glucopyranose induces p53 and apoptosis in cancer cells. Apoptosis 16: 902-913.
74. Huh JE, Lee EO, Kim MS, Kang KS, Kim CH, et al. (2005) Penta-O-galloyl-beta-D-glucose suppresses tumor growth via inhibition of angiogenesis and stimulation of apoptosis: roles of cyclooxygenase-2 and mitogen-activated protein kinase pathways. Carcinogenesis 26: 1436-1445.
75. Lee HJ, Seo NJ, Jeong SJ, Park Y, Jung DB, et al. (2011) Oral administration of penta-O-galloyl-beta-D-glucose suppresses triple-negative breast cancer xenograft growth and metastasis in strong association with JAK1-STAT3 inhibition. Carcinogenesis 32: 804-811.
76. Yin S, Dong Y, Li J, Lu J, Hu H (2011) Penta-1,2,3,4,6-O-galloyl-beta-D-glucose induces senescence-like terminal S-phase arrest in human hepatoma and breast cancer cells. Mol Carcinog 50: 592-600.
77. Wang P, Heber D, Henning SM (2012) Quercetin increased bioavailability and decreased methylation of green tea polyphenols in vitro and in vivo. Food Funct.
78. Wang P, Heber D, Henning SM (2012) Quercetin increased the antiproliferative activity of green tea polyphenol (-)-epigallocatechin gallate in prostate cancer cells. Nutr Cancer 64: 580-587.
79. Chen T, Stephens PA, Middleton FK, Curtin NJ (2012) Targeting the S and G2 checkpoint to treat cancer. Drug Discov Today 17: 194-202.
80. Tamamori-Adachi M, Hayashida K, Nobori K, Omizu C, Yamada K, et al. (2004) Down-regulation of p27Kip1 promotes cell proliferation of rat neonatal cardiomyocytes induced by nuclear expression of cyclin D1 and CDK4. Evidence for impaired Skp2-dependent degradation of p27 in terminal differentiation. J Biol Chem 279: 50429-50436.
81. Sheppard K, Kinross KM, Solomon B, Pearson RB, Phillips WA (2012) Targeting PI3 kinase/AKT/mTOR signaling in cancer. Crit Rev Oncog 17: 69-95.
82. Yu YH, Kuo HP, Hsieh HH, Li JW, Hsu WH, et al. (2012) Ganoderma tsugae Induces S Phase Arrest and Apoptosis in Doxorubicin-Resistant Lung Adenocarcinoma H23/0.3 Cells via Modulation of the PI3K/Akt Signaling Pathway. Evid Based Complement Alternat Med 2012: 371286.
83. Park SW, Kim M, Kim JY, Brown KM, Haase VH, et al. (2012) Proximal tubule sphingosine kinase-1 has a critical role in A(1) adenosine receptor-mediated renal protection from ischemia. Kidney Int.
84. Assoian RK, Yung Y (2008) A reciprocal relationship between Rb and Skp2: implications for restriction point control, signal transduction to the cell cycle and cancer. Cell Cycle 7: 24-27.
85. Schuler S, Diersch S, Hamacher R, Schmid RM, Saur D, et al. (2011) SKP2 confers resistance of pancreatic cancer cells towards TRAIL-induced apoptosis. Int J Oncol 38: 219-225.