研究生: |
吳瑋晟 Wu, Wei-Cheng |
---|---|
論文名稱: |
Spatial Error Concealment using Log-Polar Domain Based Image Inpainting 利用基於對數極座標影像修補之空間域錯誤隱匿 |
指導教授: |
張隆紋
Chang, Long-Wen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 37 |
中文關鍵詞: | H.264 、錯誤隱匿 、影像修補 、對數極座標轉換 、最小二乘匹配法 |
外文關鍵詞: | H.264, error concealment, inpainting, log-polar transformation, least squares matching |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Error concealment is one of the techniques that have been adopted to recover corrupted information for video transmission. In this article, a novel I-frame error concealment approach based on the concept of exemplar-based image inpainting is proposed. The proposed algorithm employs the log-polar transformation and least squares matching on the exemplar-based image inpainting. The log-polar transformation makes the patches in the exemplar-based image inpainting invariant to scale and rotation, while the least squares matching method refines the patch with affine transformation. In this way, the proposed inpainting algorithm is superior to deal with strong structured image. In order to meet the property of block-based coding in H.264 standard, the proposed inpainting algorithm is transferred to block-based manner. The experimental results show that the proposed algorithm outperforms the default solution in H.264 standard and conventional exemplar-based image inpainting in subjective quality.
錯誤隱匿是一種常用於視訊傳輸時修補毀損資訊的技術。本文中,運用基於範例影像修補(exemplar-based image inpainting)的概念提出了一個新的I-frame 錯誤隱匿方法。提出的演算法將指數-極座標轉換(log-polar transformation) 及最小二乘匹配法 (least squares matching) 應用在基於範例影像修補當中。指數-極座標轉換將影像修補當中的補丁(patch)達到旋轉及尺度的不變性,而最小二乘匹配法利用仿射轉換(affine transformation)將補丁更進一步細緻化。利用這樣的方法,所提出的影像修補演算法能夠更優秀地處理具有強烈結構的影像。為了滿足H.264標準中的區塊式編碼特性,提出的影像修補演算法也被轉換成區塊式的修補方式。實驗結果顯示提出的影像修補演算法在視覺效果上優於H.264標準中的預設方法以及傳統的基於範例影像修補方法。
[1] T. Wiegand, G. J. Sullivan, G. Bjntegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Trans on Circuits Systems for Video Technology, vol. 13, no. 7, pp. 560–576, July 2003.
[2] C. Chen, Y. Liu, Z. Yang, J. Bu, and X. Deng, “Multi-frame error concealment for H.264/AVC frames with complexity adaptation,” IEEE Transactions on Consumer Electronics, vol. 54, issue. 3, pp 1422-1429, August 2008.
[3] T.H. Wu, G.L. Wu, C.Y. Chen, and S.Y. Chien, “Enhanced temporal error concealment algorithm with edge-sensitive processing order, ” IEEE International Symposium on Circuits and Systems, pp. 3466-3469, May 2008.
[4] A. Sirikam and W. Kumwilaisak, “New Spatial Error Concealment using Dynamic Texture Estimation and Geometric Interpolation, ” IEEE International Conference on Multimedia and Expo, pp. 120-123, July 2007.
[5] G. Zhai, J. Cai, W. Lin, X. Yang, and W. Zhang, “Image error-concealment via Block-based Bilateral Filtering, ” IEEE International Conference on Multimedia and Expo, pp. 621-624, April 2008.
[6] Y. Shi, X. Zhu, J. Xia, and H. Yin, “A Fast and Efficient Spatial Error Concealment for Intra-coded Frames,” Congress on Image and Signal Processing, vol. 1, pp. 264-267, May 2008.
[7] Z. Wang, J. Ming, and B. Fan, “Fast Best Neighborhood Matching Algorithm for Intra Block Error Concealment in H.264/AVC,” Congress on Image and Signal Processing, vol. 1, pp. 559-563, May 2008.
[8] A. Criminisi, P. Perez, and K. Toyama, “Object Removal by Exemplar-Based Inpainting,” Proc. Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 721-728, June 2003.
[9] B.R. Li, Y. Qi, and X.K. Shen, “An Image Inpainting Method, ” In Proc. IEEE Int. Conf. on Computer Aided Design and Computer Graphics, pp. 531-536, Dec. 2005.
[10] I. Drori, D. Cohen-Or, and H. Yeshurun, “Fragment-Based Image Completion,” ACM Transactions on Graphics (TOG), vol 22 , issue 3, pp. 303-312, July 2003.
[11] C.Y. Chen, G.L. Wu, and S.Y. Chien, “Hardware-oriented image inpainting for perceptual I-frame error concealment,” IEEE International Symposium on Circuits and Systems, pp. 836-839, May 2008.
[12] S.S. Thunuguntla, “Object Tracking Using Log-Polar Transformation", Louisiana State University and Agricultural and Mechanical College, August 2005.
[13] P. Bone, R. Young, and C. Chatwin, “Position-, rotation-, scale-, and orientation-invariant multiple object recognition from cluttered scenes,” Optical Engineering, vol. 45, July 2006.
[14] M. Potuckova, “Image matching and its applications in photogrammetry, ” Czech Technical University in Prague, July 2004.
[15] X. Zhang, L. Li, X. Zhu, Y. Shang, Q. Yu, “A weighted least squares image matching based target tracking algorithm, ” Proceedings of the SPIE on 27th international congress on high-speed photography and photonics, vol 6279, no 1, pp 62793–62798