簡易檢索 / 詳目顯示

研究生: 陳頌華
Chen, Sung-Hua
論文名稱: 使用沉浸邊界法與移動計算範圍於流固耦合問題之模擬
The simulation of fluid and solid interaction problem using immersed boundary method and moving computational domain
指導教授: 林昭安
Lin, Chao-An
口試委員: 牛仰堯
Niu, Yang-Yao
陳明志
Chen, Ming-Chi
黃智永
Huang, Chih-Yung
黃楓南
Hwang, Feng-Nan
廖川傑
Liao, Chung-Chieh
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 107
中文關鍵詞: 沉浸邊界法矩陣解法平行處理高速運算移動計算範圍流固耦合
外文關鍵詞: immersed boundary method, matrix solver, parallel computing, high performance computing, moving domain method, solid-fluid interaction problem
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 沉浸邊界法在這裡用來解決流體中的運動物體,其座標系使用固定不動的直角座標系,時間方面使用分步法。此方法首先應用於探討低雷諾數下的二維振翅運動,將結果與實驗進行比較,得到很好的一致性。
    將此方法推廣於計算三維的壓力驅動的波蘇拉流,及上邊界帶動的庫艾特方管流,其模擬的邊界條件為主流場方向週期性邊界條件。為加速計算,使用快速複立葉變換可使三維的壓力波松方程簡化為二維的矩陣計算。儘管如此,平行計算效率仍在48顆CPU後效率下降,原因乃是波松方程計算過程中資進行所有資料收集的動作耗掉大部分的時間。因此舒康補矩陣解法被採用來減少計算處理器間的資料交換並增加計算效率,然而儘管資料交換的時間減少了,但計算單元內的計算卻增加了,因此得到更長的計算時間。
    最後,為了更多減少三維物體於流體中的計算時間,移動計算範圍法因而在此發展出來。此方法是當物體運動時,計算網格跟著物體增加及減少。二維的反覆振翅運動被首先用來檢驗此方法的準確性,而計算範圍為原計算域的四分之一。與實驗以及其他模擬結果比較,本方法結果顯出相當地準確性。三維的自由掉落球體也被進一步地模擬出來,其預測的阻力係數對不同雷諾數的結果也與統計的實驗結果相符合。最後,一於重力下自由掉落的橢球體也進一步地被模擬,而雷諾數從44.5到1617。在此雷諾數範圍下,其運動軌跡為二維運動,而反覆擺盪的運動模式在所有雷諾數中都存在,除了在低雷諾數44.5下垂直掉落的模式外。模擬結果與先前文獻的研究結果皆符合,而當此橢球擺盪時,不同的渦流結構產生於其分支尾端,其中也包含著名的髮夾形狀的渦流。


    The immersed-boundary method (IBM) is used here to solve flows with dynamically moving objects on fixed Cartesian grids using the fractional step method. The method is first applied to investigate flows of a 2D flapping wing at low Re. The results is validated with the benchmark solutions, and have good agreement with them.
    Simulations are further applied to compute 3D Poiseuille, and Couette duct flows with periodic boundary in the streamwise direction. The solution of the 3D pressure Poisson can be reduced to the 2D equation using fast Fourier transform. However, parallel efficiency deteriorates at 48 CPU processors, due to the requirement of all-to-all communications in the pressure Poisson equation. Therefore the Schur complement method (SCM) is adopted to reduce the communications between parallel processors and enhance the efficiency. However, the communications reduce but calculation inside the processors increase, and hence receiving the opposite results.
    Finally, in order to reduce the computational cost of flows with an embedded moving object, a moving domain method is developed, where grids are generated or deleted based on the location of the object centroid. A 2D flapping wing flow is first examined using the quarter size of the original fixed computational domain. Comparing with the benchmark solutions, the simulation results show compatible results. Further, sphere settling under gravity is also simulated. The predicted drag coefficients at different Re agree reasonably with measurements. Finally, an oblate spheroid descending under gravity is further simulated with Re at 44.5 to 1617. For the Re examined, the motions are 2D, and the fluttering motions exist in all the Reynolds numbers investigated except at Re = 44.5, in which steady falling prevails. This is consistent with previous investigations for falling disks. As the spheroid flutters, different vortex branches are generated in the trailing edge direction, in which hairpin-like vortices occur.

    Abstract iii Contents xii 1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Unsteady ying mechanisms of insect ight . . . . . . . . . . . . . . . 2 1.2.1 Clap-and-Fling . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Delayed Stall . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.3 Rotational Circulation . . . . . . . . . . . . . . . . . . . . . . 4 1.2.4 Wake Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Parallelization and matrix solvers . . . . . . . . . . . . . . . . . . . . 4 1.4 Moving domain method and freely falling problem . . . . . . . . . . . 6 1.5 Motivations and Objectives . . . . . . . . . . . . . . . . . . . . . . . 9 2 Numerical Methods 12 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Numerical scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.1 Spatial discretization . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.2 Temporal discretization . . . . . . . . . . . . . . . . . . . . . . 16 2.3.3 Forcing strategies . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.4 Rigid body motion . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.5 Rotational velocity . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4 The Pressure Poisson Equation . . . . . . . . . . . . . . . . . . . . . 23 2.4.1 Direct fast Fourier transform solver . . . . . . . . . . . . . . . 25 2.4.2 Schur Complement Method . . . . . . . . . . . . . . . . . . . 27 2.4.3 Other matrix solvers . . . . . . . . . . . . . . . . . . . . . . . 34 2.5 Moving domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.6 Complete solution procedure . . . . . . . . . . . . . . . . . . . . . . . 42 3 Results and Discussions 44 3.1 Immersed Boundary Method . . . . . . . . . . . . . . . . . . . . . . 45 3.1.1 Wing Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.1.2 Code Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2 2D MPI Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2.1 Decaying Vortex . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2.2 Laminar Poiseuille Duct Flow . . . . . . . . . . . . . . . . . . 53 3.2.3 Laminar Couette Duct Flow . . . . . . . . . . . . . . . . . . . 54 3.2.4 Calculation Eciency . . . . . . . . . . . . . . . . . . . . . . . 54 3.3 Schur Complement Method . . . . . . . . . . . . . . . . . . . . . . . 56 3.4 Moving Domain Method . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.4.1 Flapping wing . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.4.2 Simulation of a sphere settling under gravity . . . . . . . . . . 68 3.4.3 Freely falling object . . . . . . . . . . . . . . . . . . . . . . . . 79 4 Conclusions and Future Work 95 4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5 Bibliography 100

    [1] C. S. Peskin.
    Flow patterns around heart valves: a numerical method.
    J.
    Comput. Phys., 10:252{271, 1972.
    [2] C. S. Peskin. The immersed boundary method. Acta. Numer., pages 459{517,
    2002.
    [3] M. J. Berger and P. Colella.
    Local adaptive mesh re nement for shock
    hydrodynamics. J. Comp. Phys., 82:64{84, 1989.
    [4] W. Hackbusch. Parabolic multi-grid methods. Computing methods in applied
    sciences and engineering, VI:189{197, 1985.
    [5] P. Y. Huang, H. H. Hu, and D. D. Joseph. Direct simulation of the sedimentation
    of elliptic particles in oldroyd-b
    uids. J. Fluid Mech., 362:297{326, 1998.
    [6] C. C. Tsai. Measurement of 2-d
    ow eld and force for a biomimetic
    apping
    wing. A thesis of the degree of master on Institute of Applied Mechanics, 2007.
    [7] T. W. Fogh and M. Jensen. Biology and physics of locust
    ight. i. basic principles
    in insect
    ight. a critical review. Philosophical Transaction of the Royal Society
    of London. Series B, Biological Sciences, 239:415{458, 1956.
    [8] M. J. Lighthill.
    On weis-fogh mechanism of lift generation.
    J. Fluid Mech,
    60:1{17, 1973.
    [9] T. Maxworthy. Experiments on the weis-fogh mechanism of lift generation by
    insects in hovering
    ight. part 1. dynamics of the '
    ing'. J. Fluid Mech, 93:47{63,
    1979.
    100
    [10] M. H. Dickinson. Solving the mystery of insect
    ight - insects use a combination
    of aerodynamic e ects to remain aloft. Sci. American, 284:48{57, 2001.
    [11] M. H. Dickinson, F. O. Lehmann, and S. P. Sane.
    Wing rotation and the
    aerodynamic basis of insect
    ight. Science, 284:1954{1960, 1999.
    [12] L. Wei.
    Large eddy simulation of turbulent couette-poiseuille
    ows inside a
    square duct. A Thesis of the degree of Doctor of Philosophy on National Tsing
    Hua University, 2006.
    [13] H. H. Wei. Investigation of turbulent couette-poiseuille and couette
    ows inside
    a square duct. A Thesis of the degree of Doctor of Philosophy on National Tsing
    Hua University, 2012.
    [14] A. Gorobets, F. X. Trias, M. Soria, and A. Oliva. A scalable parallel poisson
    solver for three dimensional problems with one periodic direction. Computers &
    Fluids, 39:525{538, 2010.
    [15] R. Borrell, O. Lehmkuhl, F. X. Trias, and A. Oliva. Parallel direct poisson solver
    for discretisations with one fourier diagonalisable direction. J. Comput Phys.,
    230:4723{4741, 2011.
    [16] F. X. Trias, M. Soria, C. D. P. Segarra, and A. Oliva. A direct schur-fourier
    decomposition for the ecient solution of high-order poisson equations on loosely
    coupled parallel computers. Numer Linear Algebra Appl., 13:303{326, 2006.
    [17] A. Soria, C. D. P. Segarra, and A. Oliva. A direct schur-fourier decomposition
    for the solution of the three-dimensional poisson equation of incompressible
    ow
    problems using loosely coupled parallel computers. Numerical Heat Transfer.
    Part B., 43:467{488, 2003.
    [18] W. W. Willmarth, N. E. Hawk, and R. L. Harvey. Steady and unsteady motions
    and wakes of freely falling disks. Phys. Fluids, 7:197{208, 1964.
    [19] E. M. Smith.
    Autorotating wings: and experimental investigation.
    J. Fluid
    Mech., 50:513{534, 1971.
    [20] J. Feng, D. D. Joseph, R. Glowinski, and T. W. Pan.
    A three-dimensional
    computation of the force and torque on an ellipsoid settling slowly through a
    viscoelastic
    uid. J. Fluid Mech., 283:1{16, 1995.
    [21] S. Field, M. Klaus, M. G. Moore, and F. Nori. Chaotic dynamics of falling disks.
    Nature, 388:17, 1997.
    [22] A. Belmonte, H. Eisenber, and E. Moses. From
    utter to tumble: inertial drag
    and froude similarity in falling paper. Physical Review Letters, 81:345{348, 1998.
    [23] L. Mahadevan, W. S. Ryu, and A. D. T. Samuel. Tumbling cards. Phys. Fluids,
    11:1, 1999.
    [24] R. Glowinski, T-W Pan, T. I. Hesla, D. D. Joseph, and J. Periaux. A ctitious
    domain approach to the direct numerical simulation of incompressible viscos
    ow
    past moving rigid bodies: Application to particulate
    ow. J. Comput. Phys.,
    169:363{426, 2001.
    [25] T. W. Pang, R. Glowinski, and G P. Galdi. Direct simulation of the motion of
    a settling ellipsoid in newtonian
    uid. Journal of Computational and Applied
    Mathematics, 149:71{82, 2002.
    [26] U. Pesavento and Z. J. Wang. Falling paper: Navier-stokes solutions, model
    of
    uid forces, and center of mass elevation. Pysical Review Letter, 93:144501,
    2004.
    [27] A. Anderson, U. Pesavento, and Z. J. Wang. Analysis of transitions between

    uttering, tumbling and steady descent of falling cards. J. Fluid Mech., 541:91{
    104, 2005.
    [28] M. Uhlmann.
    An immersed boundary method with direct forcing for the
    simulation of particulate
    ows. J. Fluid Mech., 209:448{476, 2005.
    [29] C. Q. Jin and K. Xu. Numerical study of the unsteady aerodynamics of freely
    falling plates. Commun. Comput. Phys., 3:834{851, 2008.
    [30] D. Kolomenskiy and K. Schneider. Numerical simulations of falling leaves using a
    pseudo-spectral method with volume penalization. Theor. Comput. Fluid Dyn.,
    24:169{173, 2010.
    [31] A. R. Shenoy and C. Kleinstreuer. In
    uence of aspect ratio on the dynamics of
    a freely moving circular disk. J. Fluid Mech., 653:463{487, 2010.
    [32] V. Mathai, X. Zhu, C. Sun, and D. Lohse. Mass and moment of inertia govern
    the transition in the dynamics and wakes of freely rising and falling cylinders.
    Physical Review Letters, 119:054501, 2017.
    [33] A. Anderson, U. Pesavento, and Z. J.Wang. Unsteady aerodynamics of
    uttering
    and tumbling plates. J. Fluid Mech., 541:65{90, 2005.
    [34] Y. Tanabe and K. Kaneko. Behavior of a falling paper. Physical Review Letters,
    73:1372{1376, 1994.
    [35] P. Ern, F. Risso, D. Fabre, and J. Magnaudet. Wake-induced oscillatory paths
    of bodies freely rising or falling in
    uids. Annu. Rev. Fluid Mech., 44:97{121,
    2012.
    [36] J. M. Yusof. Combined immersed boundary/b-spline method for simulations of

    ows in complex geometries ctr annual research briefs. NASA Ames/Stanford
    University, 1997.
    [37] M. C. Lai and C. S. Peskin. An immersed boundary method with formal second-
    order accuracy and reduced numerical viscocity. J. Comput. Phys., 160:705{719,
    2000.
    [38] R. Mittal and G. Iaccarino. Immersed boundary methods. Annu. Rev. Fluid
    Mech., 37:239{261, 2005.
    [39] S. W. Su, M. C. Lai, and C. A. Lin. A simple immersed boundary technique
    for simulating complex
    ows with rigid boundary. Comput. Fluids, 36:313{324,
    2007.
    [40] C. C. Liao, Y. W. Chang, C. A. Lin, and J. M. McDonough. Simulating
    ows
    with moving rigid boundary using immersed-boundary method. Computers &
    Fluids, 39:152{167, 2010.
    [41] C. C. Liao and C. A. Lin. Simulations of natural and forced convection
    ows with
    moving embedded object using immersed boundary method. Comput. Methods
    Appl. Mech. Eng., 58:213{216, 2012.
    [42] C. C. Liao and C. A. Lin. In
    uences of a con ned elliptic cylinder at di erent
    aspect ratios and inclinations on the laminar natural and mixed convection
    ows.
    Int. J. Heat Mass Transf., 55:6638{6650, 2012.
    [43] T. E. Tezduyar, M. Behr, and J. Liou.
    A new strategy for nite element
    computations involvingmoving boundaries and interfacesthe deforming-spatial-
    domain/space-time procedure: I. the concept and the preliminary numerical
    tests. Comput Methods Appl Mech Eng, 94:339{351, 1992.
    [44] A. Johnson and T. E. Tezduyar.
    Simulation of multiple spheres falling in a
    liquid- lled tube. Comput Methods Appl Mech Eng, 134:351{373, 1996.
    [45] A. Johnson and T. E. Tezduyar.
    3d simulation of
    uid-particle interactions
    with the number of particles reaching 100. Comput Methods Appl Mech Eng,
    145:301{321, 1997.
    [46] T. N. Swaminathan, K. Mukundakrishnan, and H. H. Hu. Sedimentation of an
    ellipsoid inside an in nitely long tube at low and intermediate reynolds numbers.
    J. Fluid Mech., 551:357{385, 2006.
    [47] M. Chrust, G. Bouchet, and J. Dusek. Numerical simulations of the dynamics
    of freely falling discs. Phys. Fluids, 25:044102, 2013.
    [48] F. Auguste, J. Magnaudet, and D. Fabre. Falling styles of disks. J. Fluid Mech,
    719:388{405, 2013.
    [49] S. W. Hsu, F. N. Hwang, Z. H.Wei, S. H. Lai, and C. A. Lin. A parallel multilevel
    preconditioned iterative pressure poisson solver for the large-eddy simulation of
    turbulent
    ow inside a duct. Comput Fluids, 45:138{146, 2012.
    [50] J. Yang and F. Stern. A simple and ecient direct forcing immersed boundary
    framework for
    uid-strture interactions. J. Comput. Phys., 231:5029{5061, 2012.
    [51] C. C. Liao and C. A. Lin. In
    uence of prandtl number on the instability of
    natural convection
    ows within a square enclosure containing an embedded
    heated cylinder at moderate rayleigh number. Phys of Fluids, 27:013603, 2015.
    [52] S. W. Hsu, J. B. Hsu, W. Lo, and C. A. Lin. Large eddy simulations of turbulent
    couette-poiseuille and couette
    ows inside a square duct. J Fluid Mech, 702:89{
    101, 2012.
    [53] B. E. Owolabi and C. A. Lin. Marginally turbulent couette
    ow in a spanwise
    con ned passage of square cross section. Phys of Fluids, 30:075102, 2018.
    [54] J. Kim and P. Moin. Application of a fractional-step method to incompressible
    navior-stokes equations. J. Comput Phys., 177:133{166, 1985.
    [55] J. B. Bell and P. Collela.
    A second-order projection method for the
    incompressible navier-stokes equations. J. Comput Phys., 85:257{283, 1989.
    [56] H. Choi and P. Moin.
    E ects of the computational time step on numerical
    solutions of turbulent
    ow. J. Comput Phys., 113:1{4, 1994.
    [57] Y. Wang, C. Shu, L. M. Yang, and C. J. Teo. An immersed boundary-lattice
    boltzmann
    ux solver in a moving frame to study three-dimensional freely falling
    rigid bodies. Journal of Fluids and Structures, 68:444{465, 2017.
    [58] W. Lo and C. A. Lin. Mean and turbulence structures of couette-poiseuille
    ows
    at di erent mean shear rates in a square duct. Phys. Fluids, 18:068103, 2006.
    [59] A. Gorobets, F. X. Trias, M. Soria, and A. Oliva. A scalable parallel poisson
    solver for three-dimensional problems with one periodic direction.
    Computer
    Fluids, 39:525{538, 2009.
    [60] X. C. Cai. Lecture 12. domain decomposition method. Department of Computer
    Science.
    [61] R. Borrell, O. Lehmkuhl, F. X. Trias, and A. Oliva.
    Parallel direct poisson
    solver for discretisations with one fourier diagonalisable direction. Journal of
    Computational Physiscs, 230:4723{4741, 2011.
    [62] H. Luo, H. Diao, J. S. A. Paulo, F. de Sousa, and B. Yin.
    On the
    numerical oscillation of the direct-forcing immersed-boundary method for
    moving boundaries. Computers & Fluids, 56:61{76, 2011.
    [63] Z. J. Wang. Two dimensional mechanism for insect hovering. Physical Review
    Letters, 85:2216{2219, 2000.
    [64] J. Eldredge. Numerical simulation of the
    uid dynamics of 2d rigid body motion
    with the vortex particle method. J. Comp. Phys., 221:626{648, 2007.
    [65] S. Xu and Z. J. Wang.
    An immersed interface method for simulating the
    interaction of a
    uid with moving boundaries. J. Comp. Phys., 216:454{493,
    2006.
    [66] A. T. Cate, C. H. Nieuwstad, J. J. Derksen, and H. E. A. V. den Akker. Particle
    imaging velocimetry experiments and lattice-boltzmann simulations on a single
    sphere settling under gravity. Phys of Fluids, 14:4012{4025, 2002.
    [67] T. A. Johnson and V. C. Patel. Flow past a sphere up to a reynolds number of
    300. J. Fluid Mech, 378:19{70, 1999.
    [68] J. C. R. Hunt, A. A. Wray, P. Moin, and Eddies.
    Stream, and convergence
    zones in turbulent
    ows. proceedings of the 1988 ctr summer program. NASA
    Ames/Stanford University, Stanford, CA, pages 193{208, 1988.
    [69] J. Jeong and F. Hussain. On the identi cation of a vortex. J. Fluid Mech.,
    285:69{94, 1995.
    [70] A. R. Shenoy and C. Kleinstreuer.
    Flow over a thin circular disk at low to
    moderate reynolds numbers. J. Fluid Mech., 605:253{262, 2008.
    [71] X. Tian, M. C. Ong, J. Yang, and D. Myrhaug. Large-eddy simulations of
    ow
    105.
    normal to a circular disk at re=1:5

    Computers and Fluids, 140:422{434,
    2016.
    [72] G. E. Stringham, D. B. Simons, and H. P. Guy. The behavior of large particles
    falling in quiescent liquids. Prof. Pap. US Geol. Surv. 562-C, 1969.

    QR CODE