簡易檢索 / 詳目顯示

研究生: 李邱勇
Li, Chiu-Yung
論文名稱: 極小超曲面上的曲率估計
A Note on Curvature Estimates for Minimal Hypersurfaces
指導教授: 宋瓊珠
Sung, Chiung-Jue
口試委員: 饒維明
Nhieu, Duy-Minh
高淑蓉
Kao, Shu-Jung
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 33
中文關鍵詞: 超曲面
外文關鍵詞: hypersurface, second fundamental form
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this note, we use Simons' identity for the Laplacian of the second fundamental form
    for minimal hypersurfaces to obtain a number of new estimates for the curvatures of stable
    minimal hypersurfaces M which are immersed in a Riemannian manifold N. Under suitable
    assumptions on N, Schoen, Simon and Yau found a pointwise bound for the principal cur-
    vatures of M, provided dim(M) 6 5. In this case, this pointwise bound implies Bernstein's
    theorem for n 6 5. Schoen, Simon and Yau also gave a simpli ed proof of Simons' result: no
    non-trivial 6-dimensional stable minimal cones in R7 implies Bernstein's theorem holds for
    n = 6.


    1 Introduction 3 2 Preliminaries 4 3 Main Results 19 4 Minimal Cones in Rn+1 26 Reference 33

    [1] Almgren, F. J., Some interior regularity theorems for minimal surfaces and an extension of
    Bernstein's theorem, Ann. of Math. 84 (1966) 277-292.
    [2] Bernstein S., Sur un theoreme de geometrie et ses applications aux equations aux derivees
    partielles du type elliptique, Comm. Inst. Sci. Math. Mech. Univ. Kharkov 15 (1915-17) 38-45.
    [3] Bombieri, E., De Giorgi E., and Guisti, Minimal cones and the Bernstein problem, Invent.
    Math. 7 (1969), 243-268.
    [4] De Giorge, E., Una estensione del teorema di Bernstein, Ann. Scuola Norm. Sup. Pisa (3) 19
    (1965), 79-85.
    [5] Do Carmo, M., Riemannian Geometry, translated by F. Flaherty, Birkhauser Boston, 1992.
    [6] Fleming, W. H., On the oriented plateau problem, Rend. Circ. Mat. Palermo 2 (1962), 1-22.
    [7] Heinz, E., Uber Losungen der Minimal
    achengleichung, Nachr. Akad. Wiss. Gttingen, Math.
    Phys. Kl. (1952), 51-56.
    [8] Ho man, D. and Spruck, J., Sobolev and isoperimetric inequalities for Riemannian manifolds,
    Commun. Pure and App. Math. 27 (1974), 715-727.
    [9] Schoen, R., Simon, L. and Yau, S. T., Curvature estimate for minimal hypersurfaces, Acta
    Math. 134 (1975), 276-288.
    [10] Simons, J., Minimal varieties in Riemannian manifolds, Ann. of Math. 88 (1968), 62-105.
    [11] Xin, Y. L., Geometry of harmonic maps, Birkhauser Boston, 1996.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE