簡易檢索 / 詳目顯示

研究生: 蔡宜珉
Cai, Yi Min
論文名稱: 場板設計應用於高功率蕭特基二極體之研製
Fabrication of High Power Schottky Barrier Diode with Field Plate Design
指導教授: 吳孟奇
Wu, Meng Chyi
何充隆
Ho, Chong Long
口試委員: 謝明勳
Hsieh, Ming Hsun
黃雍勛
Huang, Yung Hsun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 76
中文關鍵詞: 蕭特基二極體高崩潰電壓BFOM場板設計氮化鋁鎵/氮化鎵水平型蕭特基二極體
外文關鍵詞: Schottky barrier diode, High breakdown voltage, Baliga’s figure-of-merit, Field plate, AlGaN/GaN, Lateral SBD
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近十幾年來科學家均專注於氮化鎵(GaN)在發光二極體之應用,而忽略了氮化鎵本身為寬能隙材料,具有高臨界電場的特性,可承受較高的偏壓。而且氮化鎵與氮化鋁鎵(AlGaN)所形成的異質接面會形成二維電子氣,該層電子具有高速電子傳導的優越特性,可應用於高速元件。同時氮化鎵的熱傳導優於矽(Si)材料,因此以氮化鎵為材料的高功率元件近幾年逐漸開始嶄露頭角。
    本論文主要研究方向為,以矽為基板之氮化鎵與氮化鋁鎵磊晶片上,製作平面型高功率蕭特基二極體元件。透過製作流程的改善,製做出電特性穩定的蕭特基二極體。經由元件圖形的設計,探討蕭特基二極體元件不同陽極與陰極間距的差異對電特性的影響。論文中藉由歐姆接觸的優化,降低特徵接觸電阻(Specific contact resistance);量測磊晶片本身的緩衝層漏電流與最高耐壓,了解磊晶片的品質;藉由製程順序的調整,降低元件逆向漏電流;最後製做具有場板設計的蕭特基二極體,提高了元件的耐壓(Breakdown voltage)。成功製做出崩潰電壓為1100V,導通電阻為3.55 mΩ-cm2,BFOM值為340.9 MW/cm2的高功率蕭特基二極體。


    Gallium nitride is a wide bandgap material which have high critical electric field characteristics could withstand higher bias. In addition, two-dimensional electron gas with high transmission speed characteristics can be applied on high-speed device. Therefore, gallium nitride high power devices have rapid development in recent years.
    The main objective of this study is to fabricate planar schottky barrier diode on GaN wafer. By improving the process flow to fabricate the schottky barrier diodes with stable electrical characteristics. Explore electrical characteristics by designing elements graphic which have different spacing between the anode and the cathode. In this study, we optimize ohmic contact to reduce specific contact resistance. Measure buffer layer leakage current to understand the quality of the epi-wafer. Finally, we fabricate a lateral schottky barrier diode with field plate design could increase the breakdown voltage of diode. The breakdown voltage of schottky barrier diode is 1100V, on resistance is 3.55 mΩ-cm2, and BFOM is 340.9 MW/cm2.

    中 文 摘 要 I Abstract II 致謝 III Contents IV List of Figure V List of Table VII Chapter 1. Introduction 1 1-1 Background of GaN 1 1-2 Application of high power schottky barrier diode 2 1-3 Literature review 5 1-4 Research motivation and purpose 7 Chapter 2. Fundamental principles 10 2-1 Two dimensional electron gas (2DEG) 10 2-2 Transmission line model (TLM) 11 2-3 Edge termination - Field plate 13 2-4 Basic theory of schottky barrier diode 16 2-4-1 Qualitative analysis 16 2-4-2 Current-voltage relationship 19 2-5 Baliga’s figure of merit 21 Chapter 3. Device structure and fabrication 25 3-1 Epitaxial wafer structure 25 3-2 The design of mask 26 3-2-1 The mask of buffer layer leakage test 27 3-2-2 The mask of high power schottky barrier diode 28 3-3 Experiment process of high power schottky diode 30 Chapter 4. Results and discussions 37 4-1 Ohmic contact analysis of schottky barrier diode 37 4-2 Leakage current analysis of epi-wafer buffer layer 44 4-3 Process analysis of high power schottky barrier diode 47 4-3-1 Reduce reverse leakage current of SBDs 48 4-3-2 Schottky barrier diode with field plate design 68 Chapter 5. Conclusion 73 References 74

    [1]Y. J. Lee et al., “Dichromatic In-GaN-based white light emitting diodes by using laser lift-off and wafer-bonding schemes,” Appl. Phys. Lett., vol. 90, no. 16, p. 161115, Apr. 2007.
    [2]Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, T. Y. Tsai, and W. C. Liu, “On a GaN-based light-emitting diode with an indium-tin-oxide (ITO) direct-Ohmic contact structure,” IEEE Photon. Technol. Lett., vol. 23, no. 15, pp. 1037-1039, Aug. 2011.
    [3]R. H. Horng, Fellow, IEEE, K. Y. Chen, C. H. Tien, and J. C. Liao, “Effects of mesa size on current spreading and light extraction of GaN-based LEDs,” Journal of display technology., vol. 11, no. 12, Dec. 2015.
    [4]K. Y. Yen, C. H. Chiu, C. W. Li, C. H. Chou, P. S. Lin, T. P. Chen, T. Y. Lin, and J. R. Gong, “Performance of InGaN/GaN MQW LEDs using Ga-doped ZnO TCLs prepared by ALD,” IEEE Photon. Technol. Lett., vol. 24, no. 23, pp. 2105-2108, Dec. 2012.
    [5]J. K. Sheu, Y. S. Lu, M. L. Lee, W. C. Lai, C. H. Kuo, and C. J. Tun, “Enhanced efficiency of GaN-based light-emitting diodes with periodic textured Ga-doped ZnO transparent contact layer,” Appl. Phys. Lett., vol. 90, no. 26, pp. 263511-1–263511-3, 2007.
    [6]E. Bahat-Treidel, Oliver Hilt, Rimma Zhytnytska, Andreas Wentzel, Chafik Meliani, Joachim Würfl, and Günther Tränkle, “Fast-switching GaN-Based lateral power Schottky barrier diodes with low onset voltage and strong reverse blocking,” IEEE Electron Device Lett, vol.. 33, no. 3, Mar. 2012.
    [7]T. F. Chang, C. F. Huang, T. Y. Yang, C. W. Chiu, T. Y. Huang, K. Y. Lee, and F. Zhao, “Low Turn-on voltage dual metal AlGaN/GaN Schottky barrier diode,” Solid-State Electronics, vol. 105, pp. 12-15, Mar. 2015.
    [8]J. Hu, S. Stoffels, S. Lenci, N. Ronchi, R. Venegas, S. You, B. Bakeroot, G. Groeseneken, “Physical origin of current collapse in Au-free AlGaN/GaN Schottky barrier diodes,” Microelectronics Reliability, vol. 54, pp. 2196–2199, 2014.
    [9]Y. Yao, J. Zhong, Y. Zheng, F. Yang, Y. Ni, Z. He, Z. Shen, G. Zhou, S. Wang, J. Zhang, J. Li, D. Zhou, Z. Wu, B. Zhang, and Y. Liu, “Current transport mechanism of AlGaN/GaN Schottky barrier diode with fully recessed Schottky anode,” Japanese Journal of Applied Physics, vol. 54, pp. 011001, 2015.
    [10]M. W. Ha, M. K. Han, C. K. Hahn, “Effects of post-oxidation on leakage current of high-voltage AlGaN/GaN Schottky barrier diodes on Si(111) substrates,” Solid-State Electronics, vol. 81, pp. 1-4, 2013.
    [11]A. Minko, V. Hoël, E. Morvan, B. Grimbert, A. Soltani, E. Delos, D. Ducatteau, C. Gaquière, D. Théron, J. C. De Jaeger, H. Lahreche, L. Wedzikowski, R. Langer, and P. Bove, “AlGaN–GaN HEMTs on Si with power density performance of 1.9 W/mm at 10 GHz,” IEEE Electron Devices Lett., vol. 25, no. 7, pp. 453–455, Jul. 2004.
    [12]I. Hwang, H. Choi, J. Lee, H. S. Choi, J. Kim, J. Ha, C. Y. Um, S. K. Hwang, J. Oh, J. Y. Kim, J. K. Shin, Y. Park, U. Chung, I. K. Yoo, and K. Kim, “1.6kV, 2.9 mΩ cm2 normally-off p-GaN HEMT device,” IEEE International Symposium on Power Semiconductor Devices and ICs Conf., June. 2012, Bruges, Belgium.
    [13]J. J. Freedsman, T. Kubo, and T. Egawa, “High drain current density e-mode Al2O3/AlGaN/GaN MOS-HEMT on Si with enhanced power device figure-of-merit (4×108 V2Ω-1cm-2) ,” IEEE Transactions On Electron Devices, vol. 60, no. 10, pp. 3079–3083, Oct. 2013.
    [14]Q. Zhou, B. Chen, Y. Jin, S. Huang, K. Wei, X. Liu, X. Bao, J. Mou, and B. Zhang, “High-performance enhancement-mode Al2O3/AlGaN/GaN-on-Si MISFETs with 626 MW/cm2 figure of merit,” IEEE Transactions On Electron Devices, vol. 62, no. 3, pp. 776-781, Mar. 2015.
    [15]S. Majumdar, A. Bag, and D. Biswas, “Implementation of veriloga GaN HEMT model to design RF switch,” Microwave And Optical Technology Lett., vol. 57, no. 7, pp. 1765-1768, Jul. 2015.
    [16]Y. Zhou, D. Wang, C. Ahyi, C. C. Tin, J. Williams, M. Park, N. M. Williams, and A. Hanser, “High breakdown voltage Schottky rectifier fabricated on bulk n-GaN substrate,” Solid-State Electronics, vol. 50, pp. 1744–1747, 2006.
    [17] K. Wu, AE Manager Taiwan Semiconductor. Introduction To SCHOTTKY Rectifier and Application Guidelines [online]. Available: http://www.farnell.com/datasheets/312532.pdf
    [18]H. Goulin and P. Merceron, (2012, Feb. 2). Select Schottky diodes based on avalanche performance [online]. Available: http://www.eetimes.com/document.asp?doc_id=1279387
    [19]K. Shenai, M. Dudley, and R. F. Davisc, “Current status and emerging trends in wide bandgap (WBG) semiconductor power switching devices,” ECS Journal of Solid State Science and Technology, vol. 2, no. 8, pp. N3055-N3063, 2013.
    [20]K. Park, Y. Park, S. Hwang, and W. Jeon, “1kV AlGaN/GaN power SBDs with reduced on resistances,” International Symposium on Power Semiconductor Devices & IC's, pp. 223-226, 2011.
    [21]J. G. Lee, B. R. Park, C. H. Cho, K. S. Seo, and H. Y. Cha, “Low turn-on voltage AlGaN/GaN-on-Si rectifier with gated Ohmic anode,” IEEE Electron Device Lett., vol. 34, no. 2, pp. 241-216, Feb. 2013.
    [22]Y. W. Lian, Y. S. Lin, J. M. Yang, C. H. Cheng, and S. S. H. Hsu, “AlGaN/GaN Schottky barrier diodes on silicon substrates with selective Si diffusion for low onset voltage and high reverse blocking,” IEEE Electron Device Lett., vol. 34, no. 8, pp. 981-983, Aug. 2013.
    [23]M. Zhu, B. Song, M. Qi, Z. Hu, K. Nomoto, X. Yan, Y. Cao, W. Johnson, E. Kohn, D. Jena, H. G. Xing, “1.9-kV AlGaN/GaN lateral Schottky barrier diodes on silicon,” IEEE Electron Device Lett., vol. 36, no. 4, pp. 375-377, Apr. 2015.
    [24]S. C. Lee, M. W. Ha, J. C. Her, S. S. Kim, J. Y. Lim, K. S. Seo, and M. K. Han, “High breakdown voltage GaN Schottky barrier diode employing floating metal rings on AlGaN/GaN hetero-junction,” International Symposium on Power Semiconductor Devices & IC's, pp. 247-250, 2005.
    [25]G. Y. Lee, H. H. Liu, and J. I. Chyi, “High-performance AlGaN/GaN Schottky diodes with an AlGaN/AlN buffer layer,” IEEE Electron Device Lett., vol. 32, no. 11, pp. 1519-1521, Nov. 2011.
    [26]O. Seok, M. K. Han, Y. C. Byun, J. Kim, H. C. Shin , M. W. Ha, “High-voltage AlGaN/GaN Schottky barrier diodes on silicon using a post-process O2 treatment,” Solid-State Electronics, vol. 103, pp. 49–53, 2015.
    [27]N. M. Shrestha1, Y. Li, and E. Y. Chang, “Simulation study on electrical characteristic of AlGaN/GaN high electron mobility transistors with AlN spacer layer,” Japanese Journal of Applied Physics vol. 53, no. 04EF08, pp. 1-7, 2014.
    [28]B. J. Baliga, Fundamentals of Power Semiconductor Devices. New York: Springer Verlag, 2008, ch.4
    [29]Donald A. Neaman, Semiconductor Physics And Device, 3rd ed. New York: McGraw-Hill, 2003, ch.9
    [30]B. J. Baliga, “Semiconductors for high-voltage, vertical channel FET’s,” Journal of Applied Physics, vol. 53, pp. 1759-1764, 1982.
    [31]H. Okumura, “Present status and future prospect of widegap semiconductor high-power devices,” Japanese Journal of Applied Physics, vol. 45, no. 10A, pp. 7565–7586, 2006.
    [32]R. Chu, C. S. Suh, M. H. Wong, N. Fichtenbaum, D. Brown, L. McCarthy, S. Keller, F. Wu, J. S. Speck, and U. K. Mishra, “Impact of CF4 plasma treatment on GaN,” IEEE Electron Device Lett., vol. 28, no. 9, pp. 781-783, Sep. 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE