研究生: |
吳東翰 Wu, Tung-Han |
---|---|
論文名稱: |
利用氫氣輔助適應性演化實驗實現具 2-酮戊二酸:鐵氧還蛋白氧化還原酶表現之大腸桿菌利用蘋果酸及硝酸鈉作為新能量代謝途徑 Hydrogen-Assisted Adaptive Evolution Experiment Enable Escherichia coli Expressing 2-Oxoglutarate: Ferredoxin Oxidoreductase to Utilize Malate and Sodium Nitrate as a New Energy Metabolic Pathway |
指導教授: |
楊雅棠
Yang, Ya-Tang |
口試委員: |
張晃猷
Chang, Hwan-You 黃介辰 Huang, Chieh-Chen |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 42 |
中文關鍵詞: | 2-酮戊二酸:鐵氧還蛋白氧化還原酶 、蘋果酸 、硝酸鈉 、固碳途徑 、生物反應器 |
外文關鍵詞: | 2-oxoglutarate:ferredoxin oxidoreductase, malate, sodium nitrate, carbon fixation pathway, bioreactor |
相關次數: | 點閱:39 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究透過引入2-酮戊二酸:鐵氧還蛋白氧化還原酶(2-oxoglutarate: ferredoxin oxidoreductase, OGOR)之外源基因,以蘋果酸(malate)作為碳源,並以硝酸鈉(NaNO_3)的作為電子接受者,設計了一套以 Arduino 為核心的無線傳輸與光密度感測的生物反應系統,利用該系統進行實驗室適應性演化實驗。實驗將原本的異營型的大腸桿菌菌株經過146天的適應性演化後突變成在厭氧條件下可將二氧化碳(CO_2)作為無機碳源使用的混營型菌株,此外,該菌株在演化過程中,藉助氫氣(H_2),開發出了新的能量來源途徑,能以蘋果酸(malate)作為電子供體,並搭配硝酸鈉(NaNO_3)作為電子接受者,即使在缺乏二氧化碳(CO_2)和氫氣(H_2)的厭氧條件下,仍能進行顯著的生長。
本研究中使用的生物反應器具備無線傳輸功能,電子零件安裝便捷且易於維護。此外,由於系統體積小巧,可以在裝上無線充電裝置後於不同的設備之間移植。此系統能夠支持多種實驗方式和電子零件模組,在不同的氣體條件下進行長期不間斷的氣體量測及菌株培養等實驗。
This study introduced a foreign gene encoding 2-oxoglutarate:ferredoxin oxidoreductase (OGOR) into Escherichia coli, using malate as a carbon source and NaNO_3 as an electron acceptor. We designed an Arduino-based bioreactor system with wireless transmission and optical density sensing for laboratory adaptive evolution experiments. Over 146 days, the original heterotrophic E. coli evolved into a mixotrophic strain capable of utilizing CO_2 as an inorganic carbon source under anaerobic conditions. Furthermore, the strain, with the assistance of H_2 during its evolution, developed a new energy source pathway, utilizing malate as an electron donor and sodium nitrate as an electron acceptor. Even under anaerobic conditions lacking both CO_2 and H_2, it can still achieve significant growth.
The bioreactor featured wireless transmission for easy installation and maintenance of components. Its compact design also supported wireless charging, facilitating transfer across different devices. This flexible system enabled long-term, uninterrupted gas measurement and bacterial culture under varying environmental conditions.
[1] https://www.bbc.com/zhongwen/trad/science-57749347
[2] Taiwan Environmental Protection Administration. (2020). 2020 Republic of China National Greenhouse Gas Inventory Report.
[3] https://www.emsd.gov.hk/energyland/tc/energy/environment/warming.html
[4] https://www.unep.org/news-and-stories/story/four-reasons-why-world-needs-limit-nitrogen-pollution
[5] UN Environment. (2019). Frontiers 2018/19: Emerging Issues of Environmental Concern.
[6] https://www.epa.gov/national-aquatic-resource-surveys/national-river-and-streams-assessment-2018-19-key-findings
[7] Moloantoa, K. M., Khetsha, Z. P., Van Heerden, E., Castillo, J. C., & Cason, E. D. (2022). Nitrate water contamination from industrial activities and complete denitrification as a remediation option. Water, 14(5), 799.
[8] Berg, I. A. (2011). Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Applied and environmental microbiology, 77(6), 1925-1936.
[9] Ludwig, M., Hartwell, J., Raines, C. A., & Simkin, A. J. (2024, March). The Calvin-Benson-Bassham cycle in C4 and Crassulacean acid metabolism species. In Seminars in cell & developmental biology (Vol. 155, pp. 10-22). Academic Press.
[10] Yamamoto, M., Arai, H., Ishii, M., & Igarashi, Y. (2006). Role of two 2-oxoglutarate: ferredoxin oxidoreductases in Hydrogenobacter thermophilus under aerobic and anaerobic conditions. FEMS microbiology letters, 263(2), 189-193.
[11] Durand, S., & Guillier, M. (2021). Transcriptional and post-transcriptional control of the nitrate respiration in bacteria. Frontiers in molecular biosciences, 8, 667758.
[12] Rütting, T., Boeckx, P., Müller, C., & Klemedtsson, L. (2011). Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences, 8(7), 1779-1791.
[13] Unden, G., & Bongaerts, J. (1997). Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1320(3), 217-234.
[14] Simon, J. (2002). Enzymology and bioenergetics of respiratory nitrite ammonification. FEMS microbiology reviews, 26(3), 285-309.
[15] Gleizer, S., Ben-Nissan, R., Bar-On, Y. M., Antonovsky, N., Noor, E., Zohar, Y., ... & Milo, R. (2019). Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell, 179(6), 1255-1263.
[16] Lo, S. C., Chiang, E. P. I., Yang, Y. T., Li, S. Y., Peng, J. H., Tsai, S. Y., ... & Huang, C. C. (2021). Growth enhancement facilitated by gaseous CO2 through heterologous expression of reductive tricarboxylic acid cycle genes in Escherichia coli. Fermentation, 7(2), 98.
[17] 鄭宇辰. (2021). 利用適應性演化實驗實現具2-酮戊二酸:鐵氧還蛋白氧化還原酶表現之大腸桿菌在蘋果酸及氫氣下吸收二氧化碳之混營生長. 清華大學電子工程研究所學位論文, 2021, 1-73.
[18] 林鼎舜. (2019). 應用於厭氧環境下細菌培養之無線傳輸型生物反應器. 清華大學電子工程研究所學位論文, 2019, 1-70.
[19] Cheng, Y. C., Huang, W. H., Lo, S. C., Huang, E., Chiang, E. P. I., Huang, C. C., & Yang, Y. T. (2023). Conversion of Escherichia coli into mixotrophic CO2 assimilation with malate and hydrogen based on recombinant expression of 2-oxoglutarate: ferredoxin oxidoreductase using adaptive laboratory evolution. Microorganisms, 11(2), 253.
[20] Swain, P. S., Stevenson, K., Leary, A., Montano-Gutierrez, L. F., Clark, I. B., Vogel, J., & Pilizota, T. (2016). Inferring time derivatives including cell growth rates using Gaussian processes. Nature communications, 7(1), 13766.
[21] Lenski, R. E., Simpson, S. C., & Nguyen, T. T. (1994). Genetic analysis of a plasmid-encoded, host genotype-specific enhancement of bacterial fitness. Journal of bacteriology, 176(11), 3140-3147.
[22] Baquero, F., Coque, T. M., & De La Cruz, F. (2011). Ecology and evolution as targets: the need for novel eco-evo drugs and strategies to fight antibiotic resistance. Antimicrobial agents and chemotherapy, 55(8), 3649-3660.
[23] Bouma, J. E., & Lenski, R. E. (1988). Evolution of a bacteria/plasmid association. Nature, 335(6188), 351-352.
[24] Unden, G., & Bongaerts, J. (1997). Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1320(3), 217-234.
[25] Stewart, V. (1993). Nitrate regulation of anaerobic respiratory gene expression in Escherichia coli. Molecular microbiology, 9(3), 425-434.