研究生: |
張力 Chang, Li |
---|---|
論文名稱: |
Wave interference phenomena in photonic crystals and disordered systems 光子晶體與雜質系統中干涉現象之探討 |
指導教授: |
吳玉書
Wu, Yu-Shu |
口試委員: |
吳玉書
齊正中 陳柏中 胡崇德 楊賜麟 林志忠 朱仲夏 許世英 張文豪 |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 80 |
中文關鍵詞: | 光子晶體 、雜質系統 、干涉現象 、平均場理論 、弱局域效應 |
外文關鍵詞: | photonic crystals, disordered systems, interference phenomena, mean field theory, weak localization |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Wave interference is an interesting and important quantum phenomenon found in various physical systems. In photonic crystals, the systems are composed of periodic dielectric structures, where the propagation of vector electromagnetic wave is modulated by the periodic dielectric distribution, giving rise to the frequency spectrum called photonic band structure” with band gaps. Such systems offer a lot of potential applications such as waveguides, modulators, resonant cavities and etc. The 1st part of the thesis focuses on the development of an efficient method for the calculation of the photonic band structure, a mean field type of theory. This theory is applied to 2D and 3D photonic crystals. Wave interference also occurs in impure metals. In these systems, electron waves are scattering by randomly localized impurities. The interference here occurs in a self-intersecting loop of electron trajectory, between the time-reversal pair of clockwise and counterclockwise paths, leading to the interesting quantum phenomenon called weak localization. This phenomenon is characterized by a time scale called the dephasing time, which typically diverges at 0K. The recent experiments in weak localization, however, have reported a puzzling, contradicting observation, namely, the saturation of dephasing time at low temperatures. The other part of the thesis deals with the weak localization phenomenon in a system with non-uniform distribution of disorder, in connection of the dephasing issue.
Reference
1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
2. E. Yablonovitch and T. J. Gmitter, Phys. Rev. Lett. 63, 1950 (1989).
3. K.M. Ho, C.T. Chan, and C.M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).
4. K. M. Ho, C. T. Chan, C. M. Souloulis, R. Biswas, and M. Sigalas, Solid State Commun. 89, 413 (1994)
5. E. Özbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, Opt. Lett. 19, 1155-1157 (1994)
6. S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, Science, 305, 5681 (2004)
7. S. G. Johnson and J. D. Joannopoulos, Appl. Phys. Lett. 77, 3409 (2000)
8. M. H. Qi, E. Lidorikis, P. T. Rakich, et al., Nature 429, 538 (2004)
9. T. T. Ngo, C. M. Liddell, M. Ghebrebrhan, and J. D. Joannopoulos, Appl. Phys. Lett. 88, 241920 (2006)
10. I. D. Hosein, M. Ghebrebrhan, J. D. Joannopoulos, and C. M. Liddell, Langmuir 26, 2151 (2010)
11. Z.Y. Li, J. Wang and B.Y. Gu, Phys. Rev. B 58, 3721 (1998).
12. K. Busch and S. John, Phys. Rev. Lett. 83, 967 (1999).
13. S. Kubo, Z.-Z. Gu, K. Takahashi, Y. Ohko, O. Sato, and A. Fujishima, J. Am. Chem. Soc. 124, 10950 (2002).
14. T. Ikeda, J. Mater. Chem. 13, 2037 (2003).
15. S. Kubo, Z.-Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, Chem. Mater. 17, 2298 (2005).
16. K. Yoshino et al. Appl. Phys. Lett. 75, 932 (1999); Y. –K. Ha et al., Appl. Phys. Lett. 79, 15 (2001);
17. D. Kang et al., Phys. Rev. Lett. 86, 4052 (2001);
18. T. T. Alkeskojld et al., Opt. Expr. 12, 5857 (2004);
19. B. Maune et al., Opt. Expr. 13, 4699 (2005);
20. H. Yoshida et al., Appl. Phys. Lett. 90, 071107 (2007);
21. J. Tuominen et al., J. Eur. Opt. Soc. Rapid. Publ. 2, 07016 (2007);
22. P. El-Kallassiet al., J. Opt. Soc. Am. B 24, 2165 (2007);
23. A. E. Miroshnichenko et al., Appl. Phys. Lett. 92, 253306 (2008);
24. U. Bog et al., Opt. Lett. 33, 2206 (2008);
25. M. Ebnali-Heidari et al., Opt. Expr. 17, 1628 (2009);
26. B. Rezaei and M. Kalafi, Opt. Commun. 282,1584 (2009);
27. K. A. Piegdon et al., Opt. Expr. 18, 7946 (2010);
28. E. A. Dorjgotov et al., Appl. Phys. Lett. 96, 163507 (2010).
29. Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, Opt. Commun. 281, 4623 (2008);
30. L. Jiusheng and D. Tieying in IEEE International Symposium: Microwave, Antenna, Propagation, EMC technologies, Wireless Communication, Hangzhou, China, 382 (2007).
31. V. A. Tolmachev, S. A. Grudinkin, J. A. Zharova, V. A. Melnikov, E. V. Astrova, and T. S. Perova, Proc. Soc. Photo-Opt. Instr. Eng. (SPIE) 6996, Z9961 (2008).
32. A. Mekis, S. Fan and J. D. Joannopoulos, Phys. Rev. B 58, 4809 (1998)
33. S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. B 60, 5751 (1999)
34. S. J. McNab, N. Moll, and Y. A. Vlasov, Opt. Expr. 11, 2927 (2003)
35. Y. Sugimoto, Y. Tanaka, N. Ikeda, Y. Nakamura, K. Asakawa, and K. Inoue, Opt. Expr. 12, 1090 (2004)
36. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, Phys. Rev. B 72, 161318 (2005)
37. H. Takano, B. S. Song, T. Asano, and S. Noda, Opt. Expr. 14, 3491 (2006).
38. A. Chutinan and S. Noda, Phys. Rev. B 62, 44882 (2000)
39. P. Lalanne, Apl. Opt. 35, 5369 (1996); P. Lalanne, Phys. Rev. B 58 9801 (1998).
40. A.A. Krokhin, P. Halevi, and J. Arriaga, Phys. Rev. B 65, 115208 (2002).
41. Chakravarty, S., and A. Schmid, Phys. Rep. 140, 193 (1986).
42. Rammer, J., Quantum Transport Theory (Perseus Books Group) (1998).
43. Altshuler, B. L. and A. G. Aronov, 1985, in Electron-Electron Interactions in Disordered Systems, edited by A. L. Efros and M. Pollak (North-Holland, Amsterdam).
44. Altshuler, B. L., A. G. Aronov, D. E. Khmelnitskii, J. Phys. C 15, 7367 (1982)
45. Bergmann, G., Phys. Rep. 107, 1 and references therein (1984).
46. Mohanty, P., E. M. Q. Jariwala, and R. A. Webb, Phys. Rev. Lett. 78, 3366 (1997).
47. Mohanty, P., and R. A. Webb, Phys. Rev. Lett. 88, 146601 (2002).
48. Lin, J. J., and N. Giordano, Phys. Rev. B 35, 1071 (1987).
49. Pooke, D. M., N. Paquin, M. Pepper, and A. Gundlach, 1989, J. Phys. Condens. Matter 1, 3289.
50. Hiramoto, T., K. Hirakawa, Y. Iye, and T. Ikoma, 1989, Appl. Phys. Lett. 54, 2103.
51. Mueller, R. M., R. Stasch, and G. Bergmann, Solid State Commun. 91, 255 (1994).
52. Abrahams, E., P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
53. Pierre, F., and N.O. Birge, Phys. Rev. Lett. 89, 206804 (2002).
54. Huang, S. M., T. C. Lee, H. Akimoto, K. Kono, J.-J. Lin, Phys. Rev. Lett. 99, 046601 (2007).
55. D. S. Golubev and A. D. Zaikin, Phys. Rev. Lett. 81, 1074 (1998);
56. D. S. Golubev and A. D. Zaikin, J. Phys.: Conf. Ser. 129,012016 (2008);
57. D. S. Golubev and A. D. Zaikin, New J. Phys. 10, 063027 (2008);
58. A. G. Semenov and A. D. Zaikin, Phys. Rev. B 80, 155312 (2009).
59. Marquardt, F., J. von Delft, R. A. Smith, and V. Ambegaokar, Phys. Rev. B 76, 195331 (2007).
60. Zawadowski, A., Jan von Delft, and D. C. Ralph, Phys. Rev. Lett. 83, 2632 (1999).
61. A. B. Gougam, F. Pierre, D. Pothier, H. Esteve and N. O. Birge, J. Low Temp. Phys. 118 447 (2000); F. Pierre and N. O. Birge, Phys. Rev. Lett. 89, 206804 (2002); F. Pierre, A.B. Gougam, A. Anthore, H. Pothier, D. Esteve, N.O. Birge, Phys. Rev. B 68, 085413 (2003).
62. F. Schopfer, C. Bäuerle, W. Rabaud, and L. Saminadayar, Phys. Rev. Lett. 90, 056801 (2003).
63. C. Bäuerle, F. Mallet, F. Schopfer, D. Mailly, G. Eska, and L. Saminadayar, Phys. Rev. Lett. 95, 266805 (2005);
64. L. Saminadayar, P. Mohanty, R. A. Webb, P. Degiovanni, and C. Bäuerle, Physica E 40, 12 (2007);
65. T. A. Costi, L. Bergqvist, A. Weichselbaum, J. von Delft, T. Micklitz, A. Rosch, P. Mavropoulos, P. H. Dederichs, F. Mallet, L. Saminadayar, and C. Bäuerle, Phys. Rev. Lett. 102, 056802 (2009).
66. T. Micklitz, T. A. Costi, and A. Rosch, Phys. Rev. B 75, 054406 (2007).
67. J. Wei, S. Pereverzev, and M. E. Gershenson, Phys. Rev. Lett. 96, 086801 (2006).
68. A. V. Germanenko, G. M. Minkov, and O. E. Rut, Phys. Rev. B 64, 165404 (2001).
69. L. Chang, C.C. Ho, H.S. Wei, and G.Y. Wu, J. Appl. Phys. 101, 053109 (2007).
70. E. Graugnard, J. S. King, S. Jain, and C. J. Summers, Phys. Rev. B 72, 233105 (2005).
71. V. A. Tolmachev, S. A. Grudinkin, J. A. Zharova, V. A. Melnikov, E. V. Astrova, and T. S. Perova, Proc. Soc. Photo-Opt. Instr. Eng. (SPIE) 6996, Z9961 (2008).
72. Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, Opt. Commun. 281, 4623 (2008);
73. L. Jiusheng and D. Tieying in IEEE International Symposium: Microwave, Antenna, Propagation, EMC technologies, Wireless Communication, Hangzhou, China, 382 (2007).
74. H. S. Wei, L. Chang, and G. Y. Wu, J. Phys.: Condens. Matter 20, 425213 (2008).