簡易檢索 / 詳目顯示

研究生: 呂宗祐
Lu, Tsung-Yu
論文名稱: 範例選擇與適應性對比損失函數的利用基於孿生網路之離線混合簽名辨識系統
Reference Selection and Adaptive Contrastive Loss for an Offline Hybrid Signature Verification System Using Siamese Networks
指導教授: 翁詠祿
Ueng, Yeong-Luh
口試委員: 黃朝宗
Huang, Chao-Tsung
吳牧恩
Wu, Mu-en
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 45
中文關鍵詞: 簽名辨識孿生網路殘差網路範例選擇適應性對比損失函數
外文關鍵詞: Signature verification, Siamese network, Residual network, Reference selection, Adaptive Contrastive Loss
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文展示一個基於孿生網路、利用混合架構的離線簽名辨識系統。
    我們採用殘差網路的結構擔當特徵擷取的模型,使WI模式下的特徵能更有
    效率的學習。另外,我們使用單層的孿生網路結構擔任WD模式下的分類
    器,藉此節省儲存空間。為了減少簽名的內在變異度與確保網絡能夠更有效
    的學習,我們提出選擇範例的方式作為孿生網絡的其中一個輸入,並利用
    選擇範例過程中得到的資訊,引入範例選擇項來提升模型的準確度。透過
    使用提出的範例選擇與適應性對比損失函數的系統,比起未使用的系統提
    高了5.9%。基於GPDS簽名資料庫,此系統能夠得到比當前最新技術還要好
    的94.61%正確率。


    This paper presents an off-line handwritten signature verification system
    based on the Siamese network, where a hybrid architecture is used. The Residual
    neural Network (ResNet) is used to realize a powerful feature extraction
    model such that Writer Independent (WI) features can be effectively learned.
    A single-layer Siamese Neural Network (NN) is used to realize a Writer Dependent
    (WD) classifier such that the storage space can be minimized. For
    the purpose of reducing the impact of the high intraclass variability of the
    signature and ensuring that the Siamese network can learn more effectively,
    we propose a method of selecting a reference signature as one of the inputs
    for the Siamese network. To take full advantage of the reference signature, we
    modify the conventional contrastive loss function to enhance the accuracy. By
    using the proposed techniques, the accuracy of the system can be increased by
    5.9%. Based on the GPDS signature dataset, the proposed system is able to
    achieve an accuracy of 94.61% which is better than the accuracy achieved by
    the current state-of-the-art work.

    1 Introduction 1 2 Preliminaries 8 2.1 Hybrid System . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Convolutional Neural Network . . . . . . . . . . . . . . . . . 9 2.3 ResNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 WI Feature Learning based on the Siamese CNN Network . . . . 12 3 Proposed Hybrid Signature Verification System 14 3.1 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Reference Selection . . . . . . . . . . . . . . . . . . . . . 17 3.2.1 Loss Function . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.2 Writer-Independent Feature Learning . . . . . . . . . . . . .20 3.2.3 Writer-dependent classifier . . . . . . . . . . . . . . . .. 23 4 Performance Evaluation 26 4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 Experimental Protocol . . . . . . . . . . . . . . . . . . . . 27 4.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . .29 4.4 Results and Discussions . . . . . . . . . . . . . . . . . . . .29 5 Conclusion 39 Bibliography 40

    [1] L. G. Hafemann, R. Sabourin and L. S. Oliveira, ”Offline handwritten
    signature verification - Literature review,” 2017 Seventh International
    Conference on Image Processing Theory, Tools and Applications (IPTA),
    Montreal, QC, p. 1-8, 2017.
    [2] M. E. Munich and P. Perona, ”Visual identification by signature tracking,”
    IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25,
    no. 2, p. 200-217, 2003.
    [3] M. A. Ferrer, M. D. Cabrera, and A. Morales, ”Synthetic off-line signature
    image generation,” ICB, p. 1-7, 2013.
    [4] Available at http://www.gpds.ulpgc.es/Download/
    [5] A. Kumar and K. Bhatia, ”A survey on offline handwritten signature
    verification system using writer dependent and independent approaches,”
    2016 2nd International Conference on Advances in Computing, Communication,
    Automation (ICACCA) (Fall), Bareilly, p. 1-6, 2016.
    [6] L. G. Hafemann, R. Sabourin and L. S. Oliveira, ”Writer-independent
    feature learning for offline signature verification using deep convolutional
    neural networks,” 2016 International Joint Conference on Neural Networks
    (IJCNN), Vancouver, BC, p. 2576-2583, 2016.
    [7] G. Eskander, R. Sabourin and E. Granger, ”Hybrid writer-independent
    writer-dependent offline signature verification system,” IET Biometrics,
    vol. 2, no. 4, p. 169-181, 2013.
    [8] G. Dimauro, S. Impedovo, G. Pirlo and A. Salzo, A, ”A multi-expert
    signature verification system for bankcheck processing,” IJPRAI 11 (05),
    p. 827-844, 1997.
    [9] Y. Serdouk, H. Nemmour and Y. Chibani, Y, ”Off-line handwritten signature
    verification using variants of local binary patterns,” Networking
    and Advanced Systems, 2nd International Conference, p.75, 2015.
    [10] H. Baltzakisa and N. Papamarkosb, ”A new signature verification technique
    based on a two stage neural network classifier,” Elsevier Journal
    Engineering Applications of Artificial Intelligence 14, p.95-103, 2001.
    [11] M. K. Kalera, S. N. Srihari and A. Xu, ”Offline signature verification and
    identification using distance statistics,” IJPRAI 18 (7) p.1339-1360, 2004.
    [12] A. Pansare and S. Bhatia, ”Handwritten signature verification using neural
    network,” International Journal of Applied Information Systems, vol.
    1, no.2, p. 44-49, 2012.
    [13] E. Ozgunduz, T. Senturk and M. Elif Karsligil, ”Off-line signature verification
    and recognition by support vector machine,” EUSIPCO, 2005.
    [14] M. Diaz, M. A. Ferrer, S. Ramalingam and R. Guest, ”Investigating the
    common authorship of signatures by off-line automatic signature verification
    without the use of reference signatures,” IEEE Transactions on
    Information Forensics and Security, vol. 1, p.487-499, 2020.
    [15] N. Arab, H. Nemmour and Y. Chibani, ”MultiScale fusion of histogrambased
    features for robust off-line handwritten signature verification,” ACS
    17th International Conference on Computer Systems and Applications,
    p.1-5, 2020.
    [16] A. Rateria and S. Agarwal, ”Off-line signature verification through machine
    learning,” 2018 5th IEEE Uttar Pradesh Section International Conference
    on Electrical, Electronics and Computer Engineering (UPCON),
    Gorakhpur, p. 1-7, 2018.
    [17] K. He, X. Zhang, S. Ren and J. Sun, ”Deep residual learning for image
    recognition,” Proceedings of the IEEE Computer Society Conference on
    Computer Vision and Pattern Recognition, p. 770-778, 2016.
    [18] J. Bromley, I. Guyon, Y. LeCun, E. S¨ackinger and R. Shah, ”Signature
    verification using a siamese time delay neural network,” int. J. Pattern
    Recognit, Artificial Intell, vol. 7, no. 4, p. 669-687, 1994.
    [19] F. Schro, D. Kalenichenko and J. P. Facenet, ”A unified embedding for
    face recognition and clustering,” CVPR, pp. 815-823, 2015.
    [20] S. Chopra, R. Hadsell and Y. LeCun, ”Learning a similarity metric discriminatively
    with application to face verification,” CVPR, p.539-546,
    2005.
    [21] S. Dey, A. Dutta, J. I. Toledo, S. K. Ghosh, J. Llados et al., ”Signet:
    Convolutional siamese network for writer independent offline signature
    verification,” CoRR, abs/1707.02131, 2017.
    [22] N. Otsu, ”A threshold selection method from gray-level histograms,” Automatica,
    vol. 11, no. 285-296, p. 23-27, 1975.
    [23] C. Harris and M. Stephens, ”A combined corner and edge detector,” Alvey
    Vision Conference, p. 147-151, 1988.
    [24] S. Ioffe and C. Szegedy, ”Batch normalization: Accelerating deep network
    training by reducing internal covariate shift,” ICML, 2015.
    [25] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov,
    ”Dropout: A simple way to prevent neural networks from overfitting,”
    The Journal of Machine Learning Research, p. 1929-1958, 2014.
    [26] X. Glorot and Y. Bengio, ”Understanding the difficulty of training deep
    feedforward neural networks,” Proceedings of the Thirteenth International
    Conference on Artificial Intelligence and Statistics, p. 249-256, 2010.
    [27] D. P. Kingma and J. Ba, ”Adam: A method for stochastic optimization,”
    3rd International Conference for Learning Representations, 2015.
    [28] L. Prechelt, ”Early stopping-but when?,” Neural Networks: Tricks of the
    trade, p. 553, 1998.

    [29] H. Srinivasan, S.N. Srihari, M.J. Beal, ”Machine Learning for Signature
    Verification,” Computer Vision, Graphics and Image Processing. Lecture
    Notes in Computer Science, vol. 4338, 2006.
    [30] J. F. Vargas, C. M. Travieso, J. B. Alonso and M. A. Ferrer, ”Off-line
    signature verification based on gray level information using wavelet transform
    and texture features,” In International Conference on Frontiers in
    Handwriting Recognition, p.587-592, 2010.
    [31] M. B. Yilmaz, B. Yanikoglu, C. Tirkaz, and A. Kholmatov, ”Offline signature
    verification using classifier combination of HOG and LBP features,”
    2011 International Joint Conference on Biometrics (IJCB), Washington,
    DC, 2011, p. 1-7.

    [32] Howard, Andrew G., et al., ”Mobilenets: Efficient convolutional neural
    networks for mobile vision applications,” arXiv preprint arXiv:1704.04861
    (2017).
    [33] Shaikh, Mohammad Abuzar, et al, ”Attention based Writer Independent
    Handwriting Verification,” arXiv preprint arXiv:2009.04532 (2020).

    QR CODE