簡易檢索 / 詳目顯示

研究生: 張文杰
Wen-Chieh Chang
論文名稱: 阿拉伯芥生理時鐘基因調控網路之系統辨別及分析
System Identification and Analysis of the Circadian Regulatory Network in Arabidopsis thaliana
指導教授: 陳博現
Bor-Sen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 54
中文關鍵詞: 生理時鐘基因調控網路生物晶片阿拉伯芥系統生物學靈敏度
外文關鍵詞: circadian regulatory network, ARX dyanmic model, in silico
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 植物的生理時鐘(Circadian System)對于其生理反應及能量的吸取有相當的重要性,相關基因的調控的機制仍然不清楚;故我們在此研究中,針對廣為研究的模型植物-阿拉伯芥(Arabidopsis thaliana)其生理時鐘基因調控網路進行系統辨別及分析。 我們主要使用ARX (AutoRegressive with eXternal input)的方法及生物晶片(Microarray chip)所偵測到的基因訊號資料建構系統動態模型,並且進一步探討基因調控網路中的基因調控能力及增益(Activation)或抑制(Inhibition)特性;另一方面我們也討論了系統基因對於輸入照光、基因突變(mutation)及擾動(perturbation)的影響,尤其可以計算出系統對于擾動的靈敏度(Sensitivity)。如此應用電機工程上之系統(System)分析概念,引進到生命科學的研究,結合成一新興的研究方向-系統生物學(System Biology)。


    Motivation: The circadian regulatory network is one of the main topics of the plant investigations. The intracellular interactions among genes in response to the environmental stimuli of light are related to the foundation of the functional genomics in plant. But to determine what genes and how much do they influence each other in whatever ways of transcriptional binding or physical interaction is not easy by the traditionally biological assays. However, under the synchronous measures of gene expression via microarray chip, in which an amount of the dynamic information is hidden and remains to be discovered, we can detect the interactive relationships of genes in the circadian regulatory network via a systematically dynamic modeling analysis in silico. In this study, a first-order dynamic model called ARX (AutoRegressive with eXternal input) is developed to describe the regulatory mechanism of a target gene from the upstream causality point of view. Based on expression profile and dynamic model of a target gene with the prior biological knowledge, we would deduce the upstream regulatory genes with their regulatory abilities under proper activation delays, and then link up a regulatory pathway. After the successful construction of the circadian regulatory network, we would analyze the system under different assumed biological conditions by performing dry experiments and try to discover the essential characteristics of the circadian regulatory network. In words, we can analyze a genetic regulatory pathway of circadian network from the system biology point of view.
    Results: Our algorithm focuses on the inference of regulatory abilities of the relevant upstream genes in circadian network, and how do they regulate the downstream genes. Then the system sensitivity analysis is investigated to gain much insight to the circadian regulatory network in Arabidopsis thaliana via microarray data and evaluate the network dynamic model in three respects of Input, Trans, and Cis level from system point of view.

    1.INTROCUSTION ………………………… 1 2.METHODS ………………………………… 7 2.1 Dynamic system description of circadian regulatory model ……………… 7 2.2 Simulation assay of the ARX system model……………12 3.RESULTS ……………………………………20 3.1 Analysis of data set ………………………………20 3.2 Modeling of the circadian system ………………21 3.3 Analysis of the circadian network model ……23 4.DISCUSSION ………………………………30 REFERENCES …………………………………35

    1. Ahmad M, Jarillo JA, Smirnova O, Cashmore AR. (1998) The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol Cell, 1, 939-948.
    2. Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA. (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science, 293, 880-883.
    3. Alter O, Brown PO, Botstein D. (2000) Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci U S A, 97, 10101-10106.
    4. Brazma A, Parkinson H, Sarkans U, Shojatalab M, Vilo J, Abeygunawardena N, Holloway E, Kapushesky M, Kemmeren P, Lara GG, Oezcimen A, Rocca-Serra P, Sansone SA. (2003) ArrayExpress--a public repository for microarray gene expression data at the EBI. Nucleic Acids Res., 31, 68-71.
    5. Brown MP, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS, Ares M Jr, Haussler D. (2000) Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci U S A, 97, 262-267.
    6. Carre IA, Kim JY. (2002) MYB transcription factors in the Arabidopsis circadian clock. J Exp Bot., 53, 1551-1557.
    7. Carre IA. (2001) Day-length perception and the photoperiodic regulation of flowering in Arabidopsis. J Biol Rhythms, 16, 415-423.
    8. Casal JJ. (2000) Phytochromes, cryptochromes, phototropin: photoreceptor interactions in plants. Photochem Photobiol., 71, 1-11.
    9. Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA. (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell, 12, 323-337.
    10. Deng XW, Quail PH. (1999) Signalling in light-controlled development. Semin Cell Dev Biol., 10, 121-129.
    11. Edgar R, Domrachev M, Lash AE. (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res, 30, 207-210.
    12. Eisen MB, Spellman PT, Brown PO, Botstein D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A, 95, 14863-14868.
    13. Eriksson ME, Hanano S, Southern MM, Hall A, Millar AJ. (2003) Response regulator homologues have complementary, light-dependent functions in the Arabidopsis circadian clock. Planta., 218, 159-162.
    14. Fankhauser C, Staiger D. (2002) Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock. Planta., 216, 1-16.
    15. Friedman N, Linial M, Nachman I, Pe'er D. (2000) Using Bayesian networks to analyze expression data. J Comput Biol., 7, 601-620.
    16. Gasch AP, Eisen MB. (2002) Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. Genome Biol., 3.
    17. Green RM, Tingay S, Wang ZY, Tobin EM. (2002) Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol., 129, 576-584.
    18. Hall A, Kozma-Bognar L, Toth R, Nagy F, Millar AJ. (2001) Conditional circadian regulation of PHYTOCHROME A gene expression. Plant Physiol., 127, 1808-1818.
    19. Hall A, Kozma-Bognar L, Bastow RM, Nagy F, Millar AJ. (2002) Distinct regulation of CAB and PHYB gene expression by similar circadian clocks. Plant J., 32, 529-537.
    20. Harkin, D.P. (2000) Uncovering Functionally Relevant Signaling Pathways Using Microarray-Based Expression Profiles. The Oncologist, 5, 501-507.
    21. Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA. (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science, 290, 2110-2113.
    22. Hayama R, Coupland G. (2003) Shedding light on the circadian clock and the photoperiodic control of flowering. Curr Opin Plant Biol., 6, 13-19.
    23. Huang S. (1999) Gene expression profiling, genetic networks, and cellular states: an integrating concept for tumorigenesis and drug discovery. J Mol Med., 7, 469-480.
    24. Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA. (2003) FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature, 426, 302-306.
    25. Kettman JR, Frey JR, Lefkovits I. (2001) Proteome, transcriptome and genome: top down or bottom up analysis. Biomol Eng., 18, 207-212.
    26. Kim JY, Song HR, Taylor BL, Carre IA. (2003) Light-regulated translation mediates gated induction of the Arabidopsis clock protein LHY. EMBO J., 22, 935-944.
    27. Lipshutz, R.J., Fodor, S.P., Gingeras T.R., Lockhart D.J. (1999) High density synthetic olignucleotide arrays. Nat. Gent. (suppl.) 21, 20-24.
    28. Martinez-Garcia JF, Huq E, Quail PH. (2000) Direct targeting of light signals to a promoter element-bound transcription factor. Science, 288, 859-863.
    29. Mas P, Devlin PF, Panda S, Kay SA (2000) Functional interaction of phytochrome B and cryptochrome 2. Nature, 408, 207–211
    30. Mas P, Alabadi D, Yanovsky MJ, Oyama T, Kay SA. (2003) Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis. Plant Cell, 15, 223-236.
    31. Mazzella MA, Cerdan PD, Staneloni RJ, Casal JJ. (2001) Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis development. Development, 128, 2291-2299.
    32. Michael TP, McClung CR. (2002) Phase-specific circadian clock regulatory elements in Arabidopsis. Plant Physiol., 130, 627-638.
    33. Motaki, S., Ayako, K., Kazuko Y.S., Kazuo S. (2003) Moleular response to drought, salinity and frost: common and different paths for plant protection. Cur. Opn. Biotechnol. 14, 194-199.
    34. Schaffer R, Landgraf J, Accerbi M, Simon V, Larson M, Wisman E. (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell, 13, 113-123.
    35. Scheel J, Von Brevern MC, Horlein A, Fischer A, Schneider A, Bach A. (2002) Yellow pages to the transcriptome. Pharmacogenomics, 3, 791-807.
    36. Schena, M., Shalon, D., Davis, R.W., Brown, P.O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467-470.
    37. Sharrock RA, Clack T. (2002) Patterns of expression and normalized levels of the five Arabidopsis phytochromes. Plant Physiol., 130, 442-456.
    38. Sherlock G, Hernandez-Boussard T, Kasarskis A, Binkley G, Matese JC, Dwight SS, Kaloper M, Weng S, Jin H, Ball CA, Eisen MB, Spellman PT, Brown PO, Botstein D, Cherry JM. (2001) The Stanford Microarray Database. Nucleic Acids Res., 29, 152-155.
    39. Staiger D. (2002) Circadian rhythms in Arabidopsis: time for nuclear proteins. Planta., 214, 334-344.
    40. Somers DE, Devlin PF, Kay SA. (1998) Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science, 282, 1488-1490.
    41. Somers DE. (2001) Clock-associated genes in Arabidopsis: a family affair. Philos Trans R Soc Lond B Biol Sci., 356, 1745-1753.
    42. Soukas A, Socci ND, Saatkamp BD, Novelli S, Friedman JM. (2001) Distinct transcriptional profiles of adipogenesis in vivo and in vitro. Biol Chem., 276, 34167-34174.
    43. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.Q., Bostein, D. and Futcher, B. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cererisiae by microarray hybridization. Mol. Biol. Cell., 9, 3273-3297.
    44. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub TR. (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci U S A, 96, 2907-2912.
    45. Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM. (1999) Systematic determination of genetic network architecture. Nat Genet., 22, 281-285.
    46. Toth R, Kevei E, Hall A, Millar AJ, Nagy F, Kozma-Bognar L. (2001) Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol., 127, 1607-1616.
    47. Velculescu VE, Zhang L, Zhou W, Vogelstein J, Basrai MA, Bassett DE Jr, Hieter P, Vogelstein B, Kinzler KW. (1997) Characterization of the yeast transcriptome. Cell, 88, 243-251.
    48. Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G. (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science, 303, 1003-1006.
    49. Yanovsky MJ, Kay SA. (2001) Signaling networks in the plant circadian system. Curr Opin Plant Biol., 4, 429-435.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE