研究生: |
巫清景 Wu, Ching Jing |
---|---|
論文名稱: |
製作奈米模板並探討嵌段共聚物於奈米模板下之自組裝現象 Fabrication of Nano-Templates for Local Self-Organization of Block Copolymers |
指導教授: |
李明昌
Lee, Ming Chang |
口試委員: |
洪毓玨
Hung, Yu Chueh 何榮銘 Ho, Rong Ming |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 106 |
中文關鍵詞: | 奈米模板 、晶向 、大面積 、多重微影 、嵌段共聚物 、自組裝 、聚苯乙烯-聚乳酸 、微相分離 |
外文關鍵詞: | nano-templates, Orientation, Large-Area, Multiple Lithography, Block Copolymers, Self-Assembly, PS-PLLA, Microphase Separation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高分子嵌段共聚物(Block Copolymers)具有自組裝(Self-Assembly)的特性,可藉由控制聚合物鏈段之長短與成模條件來改變不同的自組裝型態。在過去的二十年,嵌段共聚物(Block Copolymers)的自組裝特性可經由裂解而得到奈米結構圖案的研究備受矚目,然而為了能使嵌段共聚物薄膜有實際用途,因此控制嵌段共聚物的自組裝結構是必要的。
本論文利用直接誘導嵌段共聚物自組裝的方式(Directed Self-Assembly, DSA),即為使用特定曝光方法搭配垂直整合法製作出具有結構化的奈米模板來誘導嵌段共聚物的自組裝排列,來了解奈米模板與嵌段共聚物的交互作用下的表現。
本研究保有光學微影法的優點,配合半導體製程製作出多元之垂直整合結構。提供由上到下的奈米模板製造技術(Top-Down),使具有大面積、底部平坦、銳角以及高陡峭壁之特性,之後將嵌段共聚高分子填入其中,觀察由下到上自組裝現象的製造技術(Bottom-up)。
本研究使用的高分子量嵌段共聚物為PS-PLLA poly(styrene-(L-lactide)),觀察於奈米模板中分子之自組裝特性,利用溶劑回火系統產生微相分離來製造出具有規則性之奈米型態。藉由以上方法以期能製作出大面積且有序的奈米圖騰,並了解奈米模板與嵌段共聚物間的交互作用。
The macromolecules synthesized by block copolymers can be controlled in size and shape, by choosing the length of the polymer chain segments to change the self-assembled patterns. In the past two decades, the fabrication of nanostructured thin films from the self-assembly of degradable block copolymers (BCPs) has attracted extensive attention. To create useful BCP thin films for practical uses, controlled ordering of self-assembled nanostructures is essential.
In this research, we used a top-down approach --- a unique lithography and vertical integration method to make nano-templates for studying the BCP self-assembly in the templates. We keep the advantages of optical lithography to fabricate various nano-templates in a large area. The structures of nano-templates have flat bottom surface, acute corner and highly steep sidewall. Then we fill the block copolymers into the nano-templates to observe the phenomenon of self-assembly in nano-templates.
This thesis studies the macromolecule synthesized by two block copolymer systems --- PS-PLLA poly (styrene-(L-lactide)) self-assembled on the nano-templets, and uses the solvent-annealing approach to create the regular nano-patterns via microphase separation. Through this method (DSA), we demonstrate orderly self-assembled nanoporous structures in those patterned nano-templates.
[1] G. M. Whitesides and B. Grzybowski, "Self-assembly at all scales," Science, vol. 295, pp. 2418-21, Mar 29 2002.
[2] T. Hashimoto, J. Bodycomb, Y. Funaki, and K. Kimishima, "The effect of temperature gradient on the microdomain orientation of diblock copolymers undergoing an order-disorder transition," Macromolecules, vol. 32, pp. 952-954, Feb 9 1999.
[3] K. Mita, M. Takenaka, H. Hasegawa, and T. Hashimoto, "Cylindrical Domains of Block Copolymers Developed via Ordering under Moving Temperature Gradient: Real-Space Analysis," Macromolecules, vol. 41, pp. 8789-8799, Nov 25 2008.
[4] T. L. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky, et al., "Local control of microdomain orientation in diblock copolymer thin films with electric fields," Science, vol. 273, pp. 931-933, Aug 16 1996.
[5] R. D. Peters, X. M. Yang, T. K. Kim, and P. F. Nealey, "Wetting behavior of block copolymers on self assembled films of alkylchlorosiloxanes: Effect of grafting density," Langmuir, vol. 16, pp. 9620-9626, Nov 28 2000.
[6] R. D. Peters, X. M. Yang, T. K. Kim, B. H. Sohn, and P. F. Nealey, "Using self-assembled monolayers exposed to X-rays to control the wetting behavior of thin films of diblock copolymers," Langmuir, vol. 16, pp. 4625-4631, May 16 2000.
[7] E. Han, I. In, S. M. Park, Y. H. La, Y. Wang, P. F. Nealey, et al., "Photopatternable Imaging Layers for Controlling Block Copolymer Microdomain Orientation," Advanced Materials, vol. 19, pp. 4448-4452, 2007.
[8] R. A. Segalman, H. Yokoyama, and E. J. Kramer, "Graphoepitaxy of spherical domain block copolymer films," Advanced Materials, vol. 13, pp. 1152-+, Aug 3 2001.
[9] J. Hsieh and W. L. Fang, "A boron etch-stop assisted lateral silicon etching process for improved high-aspect-ratio silicon micromachining and its applications," Journal of Micromechanics and Microengineering, vol. 12, pp. 574-581, Sep 2002.
[10] C. S. Roper, A. Gutes, C. Carraro, R. T. Howe, and R. Maboudian, "Single crystal silicon nanopillars, nanoneedles and nanoblades with precise positioning for massively parallel nanoscale device integration," Nanotechnology, vol. 23, p. 225303, Jun 8 2012.
[11] E. Latu-Romain, P. Gilet, P. Noel, J. Garcia, P. Ferret, M. Rosina, et al., "A generic approach for vertical integration of nanowires," Nanotechnology, vol. 19, p. 345304, Aug 27 2008.
[12] K. G. A. Tavakkoli, K. W. Gotrik, A. F. Hannon, A. Alexander-Katz, C. A. Ross, and K. K. Berggren, "Templating three-dimensional self-assembled structures in bilayer block copolymer films," Science, vol. 336, pp. 1294-8, Jun 8 2012.
[13] S. Forster and T. Plantenberg, "From self-organizing polymers to nanohybrid and biomaterials," Angewandte Chemie-International Edition, vol. 41, pp. 689-714, 2002 2002.
[14] A. P. Gast, C. K. Hall, and W. B. Russel, "POLYMER-INDUCED PHASE SEPARATIONS IN NON-AQUEOUS COLLOIDAL SUSPENSIONS," Journal of Colloid and Interface Science, vol. 96, pp. 251-267, 1983 1983.
[15] Ludwik Leibler, " Theory of Microphase Separation in Block Copolymers," Macromolecules, 1980, 13, 1602.
[16] Frank S.Bates and Glnn H. Fredrickson, "BLOCK COPOLYMER THERMODYNAMICS: Theory and Experiment," Phys. Chem, 1990. 41: 525-57.
[17] M. W. Matsen and F. S. Bates, "Unifying weak- and strong-segregation block copolymer theories," Macromolecules, vol. 29, pp. 1091-1098, Feb 12 1996.
[18] I. W. Hamley, "Ordering in thin films of block copolymers: Fundamentals to potential applications," Progress in Polymer Science, vol. 34, pp. 1161-1210, Nov 2009.
[19] Verhoeven, J.D., " Fundamentals of physical metallurgy," Macromolecules, 1975, N.Y.:John Wiley & Sons
[20] J. E. Ayers, " Heteroepitaxy of semiconductor," CRC Press, 2006, pp.117-127, 163-99, 355-389
[21] C. Peroz, S. Dhuey, M. Cornet, M. Vogler, D. Olynick, and S. Cabrini, "Single digit nanofabrication by step-and-repeat nanoimprint lithography," Nanotechnology, vol. 23, Jan 13 2012.
[22] K.-S. Im, V. Sindhuri, Y.-W. Jo, D.-H. Son, J.-H. Lee, S. Cristoloveanu, et al., "Fabrication of AlGaN/GaN Omega-shaped nanowire fin-shaped FETs by a top-down approach," Applied Physics Express, vol. 8, Jun 2015.
[23] X. J. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. L. Chang, J. Kedzierski, et al., "Sub-50 nm p-channel FinFET," Ieee Transactions on Electron Devices, vol. 48, pp. 880-886, May 2001.
[24] https://en.wikipedia.org/wiki/Multiple_patterning, Multiple patterning - Wikipedia, the free encyclopedia
[25] R. J. Hoekstra, M. J. Kushner, V. Sukharev, and P. Schoenborn, "MicroTrenching resulting from specular reflection during chlorine etching of silicon," Journal of Vacuum Science & Technology B, vol. 16, pp. 2102-2104, Jul-Aug 1998.
[26] Hung-Yu Wu, " Canon FPA-3000i5+ Stepper," http://www2.ndl.narl.org.tw/cht/doc/3-1-1-0/L5/L5_A.pdf.
[27] https://en.wikipedia.org/wiki/Optical_proximity_correction, Optical proximity correction - Wikipedia, the free encyclopedia
[28] K.-J. Byeon, J.-Y. Cho, H.-B. Jo, and H. Lee, "Fabrication of high-brightness GaN-based light-emitting diodes via thermal nanoimprinting of ZnO-nanoparticle-dispersed resin," Applied Surface Science, vol. 346, pp. 354-360, Aug 15 2015.
[29] K. Maleki, S. Sanjabi, and Z. Alemipour, "DC electrodeposition of NiGa alloy nanowires in AAO template," Journal of Magnetism and Magnetic Materials, vol. 395, pp. 289-293, Dec 1 2015.
[30] V. Costa, A. Nohales, P. Felix, C. Guillem, D. Gutierrez, and C. Maria Gomez, "Structure-property relationships of polycarbonate diol-based polyurethanes as a function of soft segment content and molar mass," Journal of Applied Polymer Science, vol. 132, Mar 20 2015.
[31] M. Perego, A. Andreozzi, G. Seguini, S. Schamm-Chardon, C. Castro, and G. BenAssayag, "Silicon crystallization in nanodot arrays organized by block copolymer lithography," Journal of Nanoparticle Research, vol. 16, Dec 2014.
[32] T. Thurn-Albrecht, J. Schotter, C. A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, et al., "Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates," Science, vol. 290, pp. 2126-2129, Dec 15 2000.
[33] I. Bita, J. K. W. Yang, Y. S. Jung, C. A. Ross, E. L. Thomas, and K. K. Berggren, "Graphoepitaxy of self-assembled block copolymers on two-dimensional periodic patterned templates," Science, vol. 321, pp. 939-943, Aug 15 2008.
[34] H. Tsai, J. W. Pitera, H. Miyazoe, S. Bangsaruntip, S. U. Engelmann, C.-C. Liu, et al., "Two-Dimensional Pattern Formation Using Graphoepitaxy of PS-b-PMMA Block Copolymers for Advanced FinFET Device and Circuit Fabrication," Acs Nano, vol. 8, pp. 5227-5232, May 2014.
[35] K. W. Guarini, C. T. Black, K. R. Milkove, and R. L. Sandstrom, "Nanoscale patterning using self-assembled polymers for semiconductor applications," Journal of Vacuum Science & Technology B, vol. 19, pp. 2784-2788, Nov-Dec 2001.
[36] S. Choudhury, M. Agrawal, P. Formanek, D. Jehnichen, D. Fischer, B. Krause, et al., "Nanoporous Cathodes for High-Energy Li-S Batteries from Gyroid Block Copolymer Templates," Acs Nano, vol. 9, pp. 6147-6157, Jun 2015.
[37] B. Schurink, J. W. Berenschot, R. M. Tiggelaar, and R. Luttge, "Highly uniform sieving structure by corner lithography and silicon wet etching," Microelectronic Engineering, vol. 144, pp. 12-18, Aug 16 2015.
[38] J. R. Ligenza, "EFFECT OF CRYSTAL ORIENTATION ON OXIDATION RATES OF SILICON IN HIGH PRESSURE STEAM," Journal of Physical Chemistry, vol. 65, pp. 2011-&, 1961 1961.
[39] A. Merlos, M. Acero, M. H. Bao, J. Bausells, and J. Esteve, "TMAH/IPA ANISOTROPIC ETCHING CHARACTERISTICS," Sensors and Actuators a-Physical, vol. 37-8, pp. 737-743, Jun-Aug 1993.
[40] Cen Shawn Wu1, Yoshiyuki Makiuchi and ChiiDong Chen, "High-energy Electron Beam Lithography for Nanoscale Fabrication," http://www.intechopen.com/books/lithography/high-energy-electron-beam-lithography-for-nanoscale-fabrication#
[41] 梁曉堯, "矽積體光學晶片應用於光收發雙向多工器模組," 碩士, 光電工程研究所, 國立清華大學, 新竹市, 2011.
[42] S. A. Vitale, H. Chae, and H. H. Sawin, "Silicon etching yields in F-2, Cl-2, Br-2, and HBr high density plasmas," Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 19, pp. 2197-2206, Sep-Oct 2001.
[43] https: //web.eng.gla.ac.uk/groups/sim_centre/courses/oxidation/sigrowth_8. html - Growth of SiO
[44] G. Kim and M. Libera, "Morphological development in solvent-cast polystyrene-polybutadiene-polystyrene (SBS) triblock copolymer thin films," Macromolecules, vol. 31, pp. 2569-2577, Apr 21 1998.
[45] S. H. Kim, M. J. Misner, T. Xu, M. Kimura, T. P. Russell, " Highly Oriented and Ordered Arrays from Block Copolymers via Solvent Evaporation," Adv. Mater., 2004, 16, No. 3, February 3.
[46] A. Knoll, R. Magerle, and G. Krausch, "Phase behavior in thin films of cylinder-forming ABA block copolymers: Experiments," Journal of Chemical Physics, vol. 120, pp. 1105-1116, Jan 8 2004.
[47] K. A. Cavicchi and T. P. Russell, "Solvent annealed thin films of asymmetric polyisoprene-polylactide diblock copolymers," Macromolecules, vol. 40, pp. 1181-1186, Feb 20 2007.
[48] Z. Q. Lin, D. H. Kim, X. D. Wu, L. Boosahda, D. Stone, L. LaRose, et al., "A rapid route to arrays of nanostructures in thin films," Advanced Materials, vol. 14, pp. 1373-1376, Oct 2 2002.