簡易檢索 / 詳目顯示

研究生: 王復民
Wang, Fu-Ming
論文名稱: 改質型聚矽氧烷高分子電解質鋰離子傳導機制分析及其電池應用之研究
Investigation of lithium ionic transfer mechanism of modified polysiloxane electrolyte and its application in battery
指導教授: 萬其超
Wan, Chi-Chao
王詠雲
Wang, Yung-Yun
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 207
中文關鍵詞: 聚矽氧烷離子傳導電化學正子消散鋰電池高分子電解質
外文關鍵詞: polysiloxne, ionic transfer, electrochemistry, positron annihilation, lithium battery, polymer electrolyte
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於鋰電池爆炸案例層出不窮,因此如何去開發出具有高安全特性及高效率的電池是當務之急的事。然而使用高分子作為鋰電池內之電解質可以解決並有效改善此一問題,另外使用聚矽氧烷系列之高分子作為電解質也可改善長久以來高分子與電極接觸性較差的問題在本此篇論文研究中,我們開發出三種新型固態高分子電解質,並且在文中探討其氧烷基側鏈長度對於物理特性及與電極接觸能力的改善。除此之外,此種新型電解質也具有相當好的熱穩定特性並其中之一的高分子電解質(polysiloxane 3)具有相當高的室溫離子導電度1.15×10-4 S/cm。利用電化學儀器分析發現氧烷基側鏈的長度將有助於鋰離子傳導,另外也從正子消散圖譜發現高分子自由體積與側鏈官能基的關係,進行解析出鋰離子在高分子鏈中運動的情形。電解質應用於電池中的情形也於此篇論文中加以詳述,我們發現不但可以順利進行充放循環測試之外,對於使用不同種的電極材料下的電壓區間也可以保持一定的電容量,但是對於與使用液態電解液之電池性能仍還有一段道路要努力! 最後在本文也利用正子能階圖譜分析不同種電解質於放電後電極材料上的離子傳導研究,我們發現使用液態電解液與高分子電解質的具有完全不同的離子傳導;並且也發現氧烷基側鏈的效應也具一定程度影響了離子傳導之路徑方式,所有
    的詳細研究成果呈現於本內文中。


    In view of recent explosions of lithium ion batteries, it is important matter to make the safer and higher efficient lithium ion batteries. The polymeric electrolytes would likely to be important materials for solving these types of problems. In addition, the normal problem occurs for polysiloxane electrolyte is duo to their electrode contact ability property and without viscidity property.
    In this research, there are the novel three types of solid polymer electrolyte of the hydrophobic-hydrophilic modified siloxane being successfully prepared. We also discussed about the effect and relationship between the length of EO (ethyl oxide)side group and physical properties like electrode contact ability. As for the conductivities, the ionic conductivity of modified polysiloxane 3 could reach ca 1.15×10-4 S/cm at 25℃. We discussed about the electrochemically behavior and the EIS properties effect and relationship between the length of EO (ethyl oxide) side group at room temperature in this research. As expect, we also determined the free volume to the three types of polymer electrolytes and found the relationship between polymer structures which is EO dominated at room temperature and environmental temperature dependent. The battery performance of modified polysiloxane 3 is also assembled with LiCoO2 and LiFePO4 to a half cell testing. Furthermore, we discussedabout the possible ionic transfer behavior by PAS technique and the impedance properties effect and relationship between the length of EO (ethyl oxide) side groupand carbonate liquid electrolyte at room temperature. The impedance measurement had been confirmed the results from PAS and make its clear.

    ABSTRACT…………………………………………………………Ⅰ 摘要................................................... Ⅱ ACKONWLEDGE……………………….…….Ⅲ LIST OF FIGURES….…………………………………………….…...Ⅳ LIST OF TABLES …..…………………………………………….XⅢ LIST OF SCHEMES………………………………………………….XV 1. Overview of Battery……………………………………1 1.1 Introduction……………………………………………………1 1.2 Features and benefits of lithium-ion batteries…………3 1.3 Lithium ion batteries component and their development……………………..5 1.3.1 Anode…………………………………………………6 1.3.2 Cathode…………………………………………………….9 1.3.3 Electrolyte……………………………………………………13 1.4 Summary………………………………………………..16 1.5 Reference…………………………………………………….….17 2. The Ionic Transfer Mechanism of Polymer Electrolyte in Lithium Ion Batteries…..23 2.1 What are polymer electrolytes?......................................24 2.1.1 The fundamentals of a polymer electrolyte……………24 2.1.2 Polymer solvents and salts………………………….25 2.2 What materials are suitable as polymer electrolytes?..29 2.2.1 The requirement of polymer electrolyte………….…..29 2.2.2 The generation of polymer electrolytes……………....29 2.3 How are ions transported in a polymer electrolyte?...35 2.3.1 The effect of molecular weight and salt concentration……….……...35 2.3.2 Other effects of polymer electrolyte…………………37 2.4 Conclusion……………………………………………………39 2.5 Investigation purpose and direction…………….……39 2.6 Reference………………………………………………..40 3. Experimental Materials and Analysis Method……………43 3.1 Materials preparation……………………………………………...…….44 3.2 Analysis method……………………………….…….…….44 3.2.1 FTIR Spectroscopy………………………….....……..44 3.2.2 GPC Spectroscopy………………………….….………..44 3.2.3 DSC measurement…………………………..…....……..45 3.2.4 TGA analysis……………………………..…….….……45 3.2.5 NMR spectroscopy………………………..…....….....46 3.2.6 Electrochemical Impendence Spectroscopy (EIS) Measurement........47 3.2.6.1 Impedance spectroscopy………………………………47 3.2.6.2 Transference number measurement……………………48 3.2.6.3 Diffusion coefficient measurement…………………48 3.2.7 Positron Annihilation Lifetime Spectroscopy (PALS) Measurement………………………………………………………....49 3.2.7.1 Doppler broadening experiment……………………….49 3.2.8 Pulse Gradient Spin Echo (PGSE) NMR measurements…………….51 3.2.9 Cyclic Voltammetry (CV) measurements…………….…53 3.2.10 Battery testing measurements……………….…..53 3.3 References…………………………………………….…...56 4. Synthesis and Characterization of Polysiloxane based Copolymer Electrolyte….58 4.1 Synthesis method……………………………………….….…58 4.1.1 Synthesis of Acrylate Substituted Polysiloxane (0)………….…..…..59 4.1.2 Synthesis of Acrylate Substituted Polysiloxane (1-3)…….…..…...…60 4.1.3 Synthesis of Acrylate Substituted Polysiloxane (4)…………...……..62 4.2 Characterization of polysloxane polymer………………………….…….…...63 4.2.1 1H NMR results……………………………….….……..63 4.2.2 13C NMR results……………………………….….…….67 4.2.3 29Si NMR results………………………………..………70 4.2.4 FTIR results………………………………………….……71 4.3 Thermal analysis of polysloxane polymer………………75 4.4 Contact ability of modified polysiloxane………….…81 4.5 Reference……………………………………………….……84 5. Ionic Conductivity Analysis of Polysiloxane based Copolymer Electrolytes...…85 5.1 Solid polymer electrolyte preparation…………………85 5.2 The EO effect of ionic conductivity analysis…………86 5.3 The salt concentration effect of ionic conductivity analysis……………....…90 5.4 First stage conclusion……………………………..…….92 5.5 Reference………………………………………………………93 6. Electrochemical properties of Polysiloxane based Copolymer Electrolyte…..….94 6.1 Cyclic voltammetry analysis…………………………………94 6.2 Ionic transport analysis……………………………………98 6.2.1 Ionic transport mechanism……………………….………98 6.2.2 Cation transference number analysis…..……………102 6.2.3 Cation diffusion coefficient analysis…………….…105 6.3 Battery test analysis……………………………….….…..108 6.3.1 Lithium cobalt oxide (LiCoO2) half cell………………108 6.3.2 Lithium iron phosphate (LiFePO4) half cell………….113 6.4 AC impedance analysis of battery………………………..118 6.4.1 Lithium cobalt oxide (LiCoO2) half cell with carbonate, polysiloxanenand DBP-732 electrolytes…………118 6.4.2 Lithium iron phosphate (LiFePO4) half cell with carbonate, polysiloxane and DBP-732 electrolytes…..…..119 6.4.3 Comparison of polysiloxane based electrolytes……..124 6.5 Cycling test of battery………………………….……...127 6.6 Reference…………………………………………….………..129 7. Bulk Free Volume Studies of Polysiloxane based Copolymer Electrolytes….………………………………………………….131 7.1 The ethylene oxide (EO) effect of polymer electrolytes…131 7.2 The temperature effect of polymer electrolytes………133 7.3 Second stage conclusion…………………………………….135 7.4 Reference…………………………………………….………..136 8. Free Volume Studies of Electrode with Polysiloxane and Carbonate Electrolytes…………………………..…………….………..137 8.1 S parameter………………………………………………….138 8.2 The ethylene oxide (EO) effect of polymer electrolytes….141 8.3 The comparisons effect between polymer and carbonate electrolytes…..….142 8.4 The comparisons results between Impedance and PAS…144 8.5 Third stage conclusion………………………………………145 8.6 Reference……………………………………………………...146 9. Overall Conclusion…………………………………………...147 10. Future works……………………………………………………150 11. Author introduction and writings…………………………151

    Chapter 1
    1. J.-M. Tarascon, M. Armand, Nature 414 (2001) 359.
    2. David Linden, Thomas B.Reddy, “Hand Book Of Batteries” 3rd edition 2002
    3. N. Imanishi, Y. Takeda, O. Yamamoto, “Lithium-Ion Batteries: Fundamentals and Performance” (M. Wakihara and O. Yamamoto, Eds.), (1998), P. 98, Wiley-VCH,Weinheim
    4. M. Winter, J. O. Besenhard, “Lithium-Ion Batteries: Fundamentals and Performance” (M. Wakihara and O. Yamamoto, Eds.), (1998), P.127, Wiley-VCH,Weinheim.
    5. K. Xu, S. Zhang, B. A. Poese, T.R. Jow, Electrochemical and Solid-Sate Lett. 5 (2002) A259.
    6. T. Osaka, M. Datta, Energy Storage System for Electronics, Gordon and Breach scince publishers, (2000)
    7. E. Ferg, R. J. Gummow, A.de Kock, M.M. Thackeray, J. Electrochem. Soc. 141 (1994) L147
    8. W. Liu, X. Huang, Z. Wang, H.Li, L.Chen, J.Electrochem. Soc. 145, (1998), 59.
    9. J. J. Auborn, Y. L. Barberio, J. Electrochem Soc. 134 (1987) 638.
    10. K. M. Abraham, D. M. Pasquariellio, E. B. Willstaedt, J. Electrochem. Soc. 137 (1990) 743 18
    11. S. Morzilli, B. Scrosati, F. Sgarlatta, Electrochem. Acta 30 (1985) 1271
    12. D. C. S. Souza, V. Pralong, A. J. Jacobson, L. F. Nazar, Science 296 (2002) 2012.
    13. J. L. C. Rowsell, V. Pralong, L. F. Nazar, J. Amer, Chem. Soc. 123 (2001) 8598
    14. J. T. Vaughey, K. D. Kepler, R. Benedek, M. M. Thackeray, Electrochem. Comm. 1 (1999) 517
    15. 22. H. Wang, Y. I. Jang, B. Huang, D.R. Sadoway, Y.M. Chiang, J. Electrochem.
    Soc., 146 (1999) 473
    16. H. Tukamoto, A. R. West, J. Electrochem. Soc., 144 (1997) 3164.
    17. Y. I. Jang, B. Huang, H. Wang, D. R. Sadoway, G. Cedar, Y.M. Chiang, H.Liu, H. Tamura, J. Electrochem. Soc., 146 (1999) 862.
    18. W. S. Yoon, K. K. Lee, K. B. Kim, J. Electrochem. Soc., 147 (2000) 2023
    19. M. Mladenov, R. Stoyanova, E. Zhecheva, S. Vassilev, Electrochem. Commun. 3 (2001) 410
    20. K. Kubo, M. Fujiwara, S. Yamada, S. Arai, M. Kanda, J. Power Source 68 (1997) 553
    21. C. C. Chang, J. Y. Kim, P. N. Kumta, J. Electrochem. Soc., 149 (2002) A331.
    22. J. Cho, G. Kim, H. S. Lim, J. Electrochem. Soc., 146 (1999) 3571.
    23. Z. Lu, D. D. MacNeil, J. R. Dahn, Electrochem. Solid-State Lett. 4 (2001) A200.
    24. H. Wang, Y. I. Jang, B. Huang, D. R. Sadoway, Y.-M. Chiang, J. Power Sources 81-82 (1999) 594.
    25. J. Cho, C. S. Kim, S. I. Yoo, Electrochem. Solid-State Lett. 3 (2000) 362.
    26. G. G. Amatucci, J. M. Tarascon, L. C. Klein, Solid-State Ionics 83 (1996) 167.
    27. J. Cho, Y. J. Kim, B. Park, J. Electrochem. Soc., 148 (2001) A1110.
    28. Z. Chen, J. R. Dahn, Electrochem. Solid-State Lett. 5 (2002) A213.
    29. J. Cho, T. J. Kim, Y. J. Kim,B. Park, Electrochem. Solid-State Lett. 4 (2001) A159
    30. T. Miyasaka, U.S. Patent No. 6037095, March 30, 1998.
    31. H. J. Kweon, G. B. Kim, D.G.Park, U.S. Patent No. 6183911, October 29, 1999.
    32. Y. Matsuda, H. Nakashima, M. Morita,Y. Takasu, J. Electrochem. Soc., 128 (1981) 2552.
    33. D. Linden, “Handbook of Batteries”, McGraw-Hill, New York (1994).
    34. D. Aurbach, “Nonaqueous Electrochemistry”, Marcel Dekker, Inc., New York (1999).
    35. U. Heider, R. Oesten, M. Jungnitz, J. Power Sources 81-82 (1999) 119.
    36. G. C. Chung, H. J. Kim, S. H. Jun, J. W. Choi, M. H. Kim, J. Electrochem. Soc.,
    147 (2000) 4398.
    37. X. Z. Shu, R. S. McMillan, J. J. Murray, J. I. Davidson, J. Electrochem. Soc., 142 (1995) L161 20
    38. M. Inaba, Y. Kawatate, A. Funabiki, S. K. Jeong, T. Abe, Z. Ogumi, Electrochim.
    Acta 45 (1999) 99.
    39. M. Schmidt, U. Heider, A. Kuehner, R. Oesten, M. Jungnitz, N. Ignat’ev, P.
    Sartori, J. Power Sources 97-98 (2001) 557.
    40. K. Xu, S. S. Zhang, R. R. Jow, W. Xu, C. A. Angell, Electrochem. Solid-State Lett. 5 (2002) A26.
    41. R. Kanno, T. Shirane, Y. Inaba, Y. Kawamoto, J. Power Sources, 68 (1997) 145.
    42. R. Kanno, T. Shirane, Y. Kawamoto, Y. Takeda, M. Takano, M. Ohashi, Y. Yamaguchi, J. Electrochem. Soc., 143 (1997) 2435.
    43. R. Kanno, T. Shirane, Y. Kawamoto, Abstracts of the 8th International Meeting on Lithium Batteries; Electrochemical Society: Pennington, NJ, 1996; Vol. 8, abstract 133.
    44. A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc. 144 (1997) 1188.
    45. S. Yang, Y. Song, P. Y. Zavalij, M. S. Whittingham, Electrochem. Commun. 4 (2002) 239.
    46. S. Yang, P. Y. Zavalij, M. S. Whittingham, Electrochem. Commun. 3 (2001) 505.
    47. S. Yang, Y. Song, K. Ngala, P. Y. Zavalij, M. S. Whittingham, J. Power Sources 119 (2003) 239. 21
    48. A. Yamada, S. C. Chung, K. Hinokuma, J. Electrochem. Soc. 148 (2001) A224.
    49. A. S. Andersson, B. Kalska, L. Ha¨ggstro¨m, J. O. Thomas, Solid State Ionics 130 (2000) 41.
    50. F. Croce, A. D. Epifanio, J. Hassoun, A. Deptula, T. Olczac, B. Scrosati, Electrochem. Solid State Lett. 5 (2002) A47.
    51. A. S. Andersson, J. O. Thomas, B. Kalska, L. Ha¨ggstro¨m, Electrochem. Solid-State Lett. 3 (2000) 66.
    52. A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc. 144,
    (1997) 1188.
    53. N. Ravet, J. B. Goodenough, S. Besner, M. Simoneau, P. Hovington, M. Armand, Electrochem. Soc. Abstr. 99-2, (1999) 127.
    54. N. Ravet, S. Besner, M. Simoneau, A. Valle´e, M. Armand, J.-F. Magnan, (Hydro-Quebec) European Patent 1049182A2, 2000.
    55. H. Huang, S. C. Yin, L. F. Nazar, Electrochem. Solid State Lett. 4 (2001) A170
    56. C. Masquelier, C. Wurm, M. Morcrette,; J. Gaubicher, Interantional Meeting on Solid State Ionics, Cairns, Australia, July 9-13, 2001; The International Society of
    Solid State Ionics: 2001; paper A-IN-06.
    57. P. P. Prosini, D. Zane, M. Pasquali, Electrochim. Acta 46 (2001) 3517.
    58. S. Y. Chung, J. T. Bloking, Y. M. Chiang, Nat. Mater. 1 (2002) 123. 22
    59. O. Garcı´a-Martin, M. Alvarez-Vega, F. Garcia-Alvarado, J. Garcia-Jaca, J. M. Gallardo-Amores, M. L. Sanjua´n, U. Amador, Chem. Mater. 13 (2001) 1570.

    Chapter 2
    1. P.V. Wright, Br. Polym. J. 7 (1975) 319.
    2. M. B. Armand, Fast ion transfer in solids, ed. W. Van Gool, North Holland, Amsterdam, 1973, p. 665.
    3. S. M. Zahurak, M. L. Kaplan, E. A. Rietman, D. W. Murray, R. J. Cava, Macromolecules 21 (1988) 654.
    4. P. W. M. Jacobs, J. W. Lorimer, A. Russer, M. Wasiucionek, J. Power Sources 26 (1989) 503.
    5. A. Vallee, S. Besner, J. Prud’homme, Electrochimi. Acta 37-39 (1992) 1579.
    6. S. Lascaud, M. Perrier, A. Vallee, S. Besner, J. Prud’homme, M. Armand, Macromolecules 27 (1994) 7469.
    7. K. Murata, S. Izuchi, Y. Yoshihisa, Electrochimica Acta 45 (2000) 1501.
    8. D. E. Fenton, J. M. Parker, P. V. Wright, Complexes of alkali metal ions with poly(ethylene oxide). Polymer, 14 (1973) 589.
    9. D. F. Shriver, P. G. Bruce, Solid state electrochemistry. Cambridge: Cambridge University Press; 1995. p. 95.
    10. P. G. Bruce, F. M. Gray. In: P. G. Bruce, editor. Solid state electrochemistry. Cambridge: Cambridge University Press; 1995. p. 119.
    11. C. W. Lin, C. L. Hung, M. Venkateswarlu, B. J. Hwang, J. Power Sources 146
    (2005) 397
    12. L. Hu, Z. Tang, Z. Zhang, J. Power Sources 166 (2007) 226
    13. G. Jiang, S. Maeda, Y. Saito, S. Tanase, T. Sakai, J. Electrochem. Soc., 152 (2005) A767
    14. F. Croce, G. B. Appetecchi, L. Perci, S. Scrosati, Nature 394 (1998) 456.
    15. W. Krawiec, Jr. L. G. Scanlon, J. P. Feller, R. A. Vaia, S. Vasudevan, E. P. Giannelis, J. Power Sources 54 (1995) 310.
    16. J. E. Weston, B. C. H. Steele, Solid State Ionics 7 (1982) 75.
    17. W. Wieczorek, D. Raducha, A. Zalewska, J. R. Stevens., J. Phys. Chem. 102 (1998) 8725.
    18. F. Capuono, F. Croce, B. Scrosati., J. Electrochem. Soc., 138 (1991) 1918.
    19. F. Croce, R. Curini, A. Martinelli, F. Ronci, B. Scrosati, R. Caminiti, J. Phys. Chem., 103 (1999) 10632.
    20. D. Golodnitsky, G. Ardel, E. Strauss, E. Peled, Y. Lareah, Y. Rosenberg, J. Electrochem. Soc. 144 (1997) 3484.
    21. Y. Dai, Y. Wang, S. G. Greenbaum, S. A. Bajue, D. Golodnitsky, G. Ardel, Electrochim Acta 43 (1998) 1557.
    22. M. Watanabe, A. Nishimoto, Solid State Ionics 79 (1995) 306.
    23. J. S. Tonge, D. F. Shriver, J. Electrochem. Soc., 134 (1987) 269.
    24. A. Killis, J. F. LeNest, H. Cheradame, A. Gandini, Macromol. Chem., 183 (1982) 2835.
    25. H. Cheradame, J. F. LeNest, J. R. MacCallum, C. A. Vincent, Elsevier, London,
    1987, p. 103.
    26. F. M. Gray, polymer electrolytes, The royal society of chemistry, 1997, p.104
    27. F. M. Gray, polymer electrolytes, The royal society of chemistry, 1997, P.132

    Chapter 3
    1. T. Horie, K. Noda, S. Yamada, US Patent 6,124,062.
    2. R. Hooper, L.J. Lyons, M.K. Mapes, D. Schumacher, D.A. Moline, R. West, Macromolecules 34 (2001) 931.
    3. K. Nagaoka, H. Naruse, I. Shinohara, J. Polym. Sci., Polym. Lett. Ed. 22 (1984) 659.
    4. P. G. Hall, G. R. Davies, J. E. Mclntyre, I. M. Ward, D. J. Bannister, K. Brocq, Polym. Commun. 27 (1986) 98.
    5. D. Fish, I. M. Khan, J. Smid, Makromol. Chem., Rapid Commun. 7 (1986) 115.
    6. D. Fish, I. M. Khan, E. Wu, J. Smid, Br. Polym. J. 20 (1988) 281.
    7. I. M. Khan, Y. Yuan, D. Fish, E. Wu, J. Smid, Macromolecules 21 (1988) 2684.
    8. G. B. Zhou, I. M. Khan, J. Smid, Polym. Commun. 30 (1989) 52.
    9. R. Spindler, D. F. Shriver, Macromolecules 21 (1988) 648.
    10. R. Spindler, D. F. Shriver, J. Am. Chem. Soc. 110 (1988) 3036.
    11. Z. Zhang, L. J. Lyons, K. Amine, R. West, Macromolecules 38 (2005) 5714.
    12. K.M. Abraham, Z. Jiang, B. Corroll, Chem. Mater. 9 (1997) 1978.
    13. C.L. Cheng, C.C. Wan, Y.Y. Wang, M.S. Wu, J. Power Sources 144 (2005) 238.
    14. Y.T. Kim, E.S. Smotkin, Solid State Ionics 149 (2002)
    15. M. A. Monge, J. A. Dı´az, R. Pareja, Macromolecules, 37 (2004) 7223.
    16. Y. J. Fu, C. C. Hu, K. R. Lee, H. A. Tsai, R. C. Ruaan, J. Y. Lai, European Polym. J., 43 (2007) 959.
    17. Ka¨ rger, J.; Pfeifer, H.; Heink, W. In Advances in Magnetic Resonance; Warren, W. S., Ed.; Academic Press: San Diego, 12 (1988) 1.
    18. Y. Saito, K. Hirai, H. Katayama, T. Abe, M. Yokoe, K. Aoi, M. Okada, Macromolecules, 38 (2005) 6485.
    19. W. S. Price, P. K. Kuchel, J. Magn. Reson. 94 (1991) 133.
    20. E. O. Stejskal, J. E. Tanner, J. Chem. Phys. 42 (1965) 288.
    21. C. C. Chen, K. F. Chiu, K. M. Lin, H. C. Lin, C. R. Yang, F. M. Wang, Phys. Scr. T129 (2007) 74
    22. A. Van Veen, H. H. Schut, J. de Vries, H. A. Hakvoort, M. R. Ijipma, AIP Conf.
    Proc. 218 (1990) 171.

    Chapter 4
    1. Z. Zhang, L. Lyons, J. K. Amine, R. West, Macromolecules, 38 (2005) 5714.
    2. Z. Zhang, D. Sherlock, R. West, R. West, K. Amine, L. J. Lyons Macromolecules 36 (2003) 9176.
    3. R. Hooper, L. J. Lyons, M. K. Mapes, D. Schumacher, D. A. Moline, R. West, Macromolecules 34 (2001) 931.
    4. J. Lin, Q. Tang, J. Wu, S. Hao, Reactive & Functional Polymers 67 (2007) 275.
    5. N. Rossi, Z. Zhang, Y. Schneider, K. Morcom, L. Lyons, Q. Wang, K. Amine, R. West, Chem. Mater. 18 (2006) 1289.
    6. Z. Zhang, L. Lyons, J. Jin, K. Amine, R. West, Chem. Mater. 17 (2005) 5

    Chpater 5
    1. F. M. Gray, Polymer Electrolyte, The Royal Society of Chemistry, Cambridge, UK, (1997) 16
    2. N. Binesh, S. Bhat, J. Polym. Sci. B 36 (1998) 1201.
    3. Z. Zhang, L. Lyons, J. Jin, K. Amine, R. West, Chem. Mater. 17 (2005) 5646.
    4. Z. Zhang, L. Lyons, J. K. Amine, R. West, Macromolecules, 38 (2005) 5714.

    Chapter 6
    1. Y. Kang, J. Lee, J. I. Lee, C. Lee, J. Power Sources 165 (2007) 92.
    2. M. Walkowiak, G. Schroeder, B. Gierczyk, D. Waszak, M. Osin'ska, Electrochem. Commun. 9 (2007) 1558.
    3. T. Inose, S. Tada, H. Morimoto, S. Tobishima, J. Power Sources 161 (2006) 550.
    4. D.K. Gosser Jr., Cyclic Voltammetry, VCH Publishers, Inc., New York, 1994.
    5. T. Inose, S. Tada, H. Morimoto, S.-i. Tobishima, J. Power Sources 161 (2006) 550.
    6. B. Scrosati, J. Electrochem. Soc., 139 (1992) 2776
    7. D. Linden, T. B. Reddt, “Handbook of Batteries”, McGraw-Hill Co., New York, 2001
    8. Walter A. van Schalkwijk, “Advances in Lithium-Ion Batteries”, Kluwer Academic/Plenum Publishers, New York, 2002
    9. Abraham, K.M.; Jiang, Z.; Corroll, B. Chem. Mater. 9 (1997) 1978.
    10. J. H. Shin, S. Passerini, J. Electrochem. Soc., 151 (2004) A238
    11. H. Mazor, D. Golodnitsky, E. Peled, W. Wieczorek, B. Scrosati, J. Power Sources 178 (2008) 736.
    12. Y. Zheng, J. Liu, Y.P. Liao, G. Ungar, P.V. Wright, J. Power Sources 146 (2005) 418.
    13. D. Golodnitsky, E. Livshits, A. Ulus, E. Peled, Polym. Adv. Technol. 13 (2002) 683.
    14. F.M. Wang, C.C. Wan, Y.Y. Wang, J. Appl. Elechem. 39 (2009) 253
    15. H. Bryngelsson, M. Stjerndahl, T. Gustafsson, K. Edström, J. Power Sources 174 (2007) 970.
    16. Ping Yu, B. N. Popov, J. A. Ritter, and R. E. White, J. Electrochem. Soc., 146 (1999) 8.
    17. S. Guinot, E. Salmon, J. F. Penneau, and J. F. Fauvarque, Electrochim. Acta, 43 (1998) 1163.
    18. Y. Ma, M. Doyle, T. F. Fuller, M. M. Doeff, L. C. De Jonghe, and J. Newman, J. Electrochem. Soc., 142 (1995) 1859.
    19. X. Wang, E. Yasukawa, S. Mori, Electrochimica Acta, 45 (2000) 2677

    Chapter 7
    1. M. Eldrup, D. Lightbody, J.N. Sherwood, Chem. Phys. 63 (1981) 51.
    2. I. Pinnau, A. Morisato, Z. He, Macromolecules 37 (2004) 2823.
    3. S. Seki, Y. Terashima, Y. Kunimi, T. Kawamori, M. Tashiro, Y. Honda, S. Tagawa, Radiat. Phys. Chem. 68 (2003) 501.
    4. L.M. Ding, J. Shi, C.Z. Yang, Synth. Met. 87 (1997) 157.
    5. R. Kurono, M.A. Mehta, T. Inoue, T. Fujinami, Electrochim. Acta 47 (2001) 483

    Chapter 8
    1. F. M. Wang, C. C. Wan, Y. Y. Wang, J. Appl. Electrochem. 39 (2009) 253
    2. F. M. Wang, C. C. Hu, S. C. Lo, Y. Y. Wang, C. C. Wan, Solid State Ionics 180 (2009) 40
    3. M. Zhao, J. Wang, D. Chen, X. Hao, B. Wang, Physica B 403 (2008) 2594
    4. M. F. Ferreira Marques, P. M. Gordo, Zs. Kajcsos, C. L. Gil, A. P. deLima, D. P. Queiroz, M. N. dePinho, Radiat. Phys. Chem. 76 (2007) 129
    5. H. Chen, W. S. Hung, C. H. Lo, S. H. Huang, M. L. Cheng, G. Liu, K. R. Lee, J. Y. Lai, Y. M. Sun, C. C. Hu, R. Suzuki, T. Ohdaira, N. Oshima, Y. C. Jean, Macromolecules 40 (2007) 7542 147
    6. Nakanishi H, Jean Y. Positron and positronium chemistry. Amsterdam: Elsevier Science Publishers (1988)
    7. E. Strauss, D. Goldonitsky, E. Peled, Electrochem. Solid-State Lett. 3 (1999) 115
    8. H. Ota, T. Akai, H. Namita, S. Yamaquchi, M. Nomura, J. Power Sources 119-121
    (2003) 567

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE