簡易檢索 / 詳目顯示

研究生: 林振榮
論文名稱: 摻銻氧化錫研製與特性研究
Preparation and Characterization of Antimony-doped Tin Oxide
指導教授: 江慧真
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2012
畢業學年度: 100
語文別: 中文
中文關鍵詞: 摻銻氧化錫化學沉澱法
外文關鍵詞: Antimony doped Tin Oxide, Chemical precipitation method
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要採化學沉澱法製備摻銻氧化錫(Antimony-doped Tin Oxide (ATO))粉體。探討不同製程條件對於ATO特性的影響。首先將五水四氯化錫和三氯化銻利用鹽酸溶解成酸液後與沉澱劑氫氧化鈉進行反應,摻雜不同的銻錫比例 (1%-9%),改變製程方式、反應溫度。前驅物經高溫燒結450℃-1300℃,獲得ATO奈米粉體。所得ATO分別以熱重分析儀、X光繞射儀、掃描式電子顯微鏡、傅立葉轉換紅外光譜儀、光致螢光光譜作材料性質的測量。由熱重分析結果表明前驅物的燒結溫度應高於450℃;以EDS確定ATO樣品銻錫比例與理論銻錫比例無太大差異。由X光繞射結果並無氧化銻晶相結構存在,得知銻有摻雜進入二氧化錫中,若煅燒溫度過高,銻會因高溫而氣化,產生銻錫比例偏差。掃瞄式電子顯微鏡顯示其形貌會因為摻雜銻、反應溫度和煅燒溫度不同產生粒徑變化。ATO奈米粉體粒徑約在從紅外光譜偵測到450-750cm-1之間有Sn-O的振動吸收,且紅外吸收度隨煅燒溫度上升。在PL光譜中,摻雜後二氧化錫氧空缺複合發光減弱,非固有發光472nm、540nm、672nm全部衰弱,煅燒溫度上升粉體發光強度越強。


    Antimony-doped Tin Oxide (ATO) powders were synthesized using a chemical precipitation method. We use both reactants of Tin Chloride and Antimony(III) Chloride as well as urea or Sodium Hydroxide solution as the precipitant to get precursor. Then the precursor with a doping rate varying from 1 to 9 mol.% of Antimony were calcined at 450℃-1300℃ for two hours. The effects of the various synthesizing parameters, including reaction temperature, the doping amount of Antimony, and the calcination temperature of the precursor were investigated in details. The results of energy dispersive spectroscopy (EDS) measurement ensured the stoichiometric ratio of Sb/Sn in our ATO powders. By the thermogravimetric analysis (TGA), ATO powders stability generated when temperature higher than 450℃.In XRD patterns, all our samples exhibit the tetragonal crystal structure of the parent SnO2 compound and no other impurity phase were observed. Thus we can determine that Sb is indeed doped into the Tin Oxide. The powders calcined higher than 1300℃ was difficult to control the Sb doping content, because the evaporation temperature of the antimony oxide is about 1300oC. The images of scanning electron microscopy (SEM) showed the particle size due to antimony-doped, reaction temperature and calcined at different temperatures. In the Fourier-Transform Infrared Spectrum (FTIR), we observed vibration absorptions of Sn-O at 450-750 cm-1. Deep level emission of SnO2 at 472 nm, 540 nm, 672nm weaked with Sb-doping ratio. Calcination temperature and the Sb-doping ratio will affect the absorption intensity.

    摘要 I Abstract II 誌謝 III 圖目錄 VII 表目錄 XI 第一章緒論 1 1.1 奈米科技(NANOTECHNOLOGY) 1 1.2 透明導電膜簡介 2 1.3 金屬氧化物類導電粉體簡介 4 1.4 粉體特性 4 1.5 粉體分散原理 5 1.5.1 物理分散方法 5 1.5.2 化學分散方法 6 1.6 ATO特性 7 1.6.1 ATO電學特性 8 1.6.2 ATO光學特性 9 1.7 摻銻氧化錫製備方法 10 1.7.1 溶膠凝膠法( Sol-Gel ) 10 1.7.2 固相法 111 1.7.3 水熱法 11 1.7.4 化學共沉澱法 122 1.8 ATO應用 133 1.9 研究動機 144 第二章 實驗方法與分析 16 2.1 實驗試劑 16 2.2 化學沉澱法製備摻銻氧化錫前驅物 16 2.3 特性分析儀器 18 2.3.1 熱重分析儀 Thermogravimetry Analyzer (TGA) 18 2.3.2 X光粉末繞射儀X-ray Powder Diffractometer (XRD) 19 2.3.3 熱場發射掃描式電子顯微鏡 Thermal Type Field Emission Scanning Electron Microscope (FESEM) 20 2.3.4 光致螢光光譜儀 Photoluminescence (PL) 21 2.3.5 傅立葉轉換紅外光譜儀 Fourier-Transform Infrared Spectrometer (FTIR) 22 第三章 結果與討論 29 3.1 試驗實驗測試 : 29 3.1.1 方法一 : 恆溫振盪法 29 3.1.2 方法二 : 滴定法 34 3.1.2.1 錫銻酸液混合滴定或各自同時滴定 34 3.1.2.2 反應溫度比較 37 3.2 不同摻雜比例比較 40 3.2.1 表面形貌分析 41 3.2.2 晶體結構分析 41 3.2.3 紅外性質分析 42 3.2.4 發光特性分析 44 3.3 煅燒溫度對粉體影響 45 3.4 分散劑和球磨對粉體影響 46 第四章 結論 70 參考文獻 71

    1.R. Waser. Nanoelectronics and Information Technology, 2003, Weinheim : WILEY-VCH Verlag GmbH & Co. KGaA.
    2.翁明壽,奈米材料與奈米科技,東華材料,2006。
    3.R. Kubo. J. Phys. SOC Japan, 1962, 17, 975.
    4.G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel. Phys.Rev. Lett., 1983, 50, 120.
    5.Chopra, K. L. , Major, S. , Pandya, D. K. , Thin Solid Films, 1983, 102, 1-46.
    6.Wenjea J. Tseng, Frank Tzeng, Physicochem. Eng. Aspects , 2006, 276, 34–39.
    7.WU Xiang-wei , CHEN Zhen-hua, Trans. Nonferrous Met. Soc. China, 2004, 6326, 06, 1123.
    8.Theo Hahn : Proc. 1987 , International Tables for Crystallography Vol.A Space-Group Symmetry, Second Edito P575.
    9.Linus Pauling : Proc. 1989, The Nature of the Chemical Band, P514
    10.J. Rockenberger, U. zum Felde, M. Vischer, L. Troger, M. Haase, H. Weller, Journal of chemical physics, 2000, 112, 4296-4304.
    11.Garima Jain, R. Kumar, Optical Materials, 2004, 26, 27-31.
    12.E. Leja. J. Korecki, K. Krop and K. , Thin Solid Films, 1979, 59, 147.
    13.E. Leja. T. Pisarkiewicz and A. Kolodziej, Thin Solid Films, 1980, 67 ,45.
    14.Meng, Li-jian, dos Dantos, M.P., Vacuum, 1994, 45, 1191-1195.
    15.E. Bursten, phys. Rev, 1954, 93, 632.
    16.楊明輝,透明導電膜,2006,藝軒圖書出版社。
    17.S. Shanthi, C. Subramanian, P Ramasamy, Journal of Crystal Growth, 1999, 197, 858-864.
    18.Chen X C. Materials Letters, 2005, 59, 1239-1242.
    19.Hyung-Joon J, Min-Kyu J, Misook Kang, et al. Materials Letters, 2005, 59, 1801-1810.
    20.M.I.B. Bernardi, Journal of the European Ceramic Society, 2002, 22, 2911–2919.
    21.Grzeta B, Tkalcec E, Goebbert C, et al. Physics and chemistry of Solids, 2002, 63, 765-781.
    22.Fanfei Bai, Yun He, Ping He, et al. Materials Letters, 2006, 60, 3126-3129.
    23.Nishihar.美國專利:US5518810
    24.James P. Coleman, Anne T. Lynch, Puttanachetty Madhukar, John H. Wagenknech, Solar Energy Materials & Solar Cells, 1999, 56, 375~394.
    25.T. Krishnakumar, R. Jayaprakash, Nicola Pinna, Journal of Physics and Chemistry of Solids, 2009, 70, 993-999.
    26.G C Jorge, P M Andrew, M P Laurence, et al. Angew Chem Ed, 2003, 42, 3011-3016.
    27.K S Kim, S Y Yoon, W J Lee and K H Kim, Surf. Coat. Technol., 2001, 138, 2-3, 229-236.
    28.C.Goebbert, R. Nonninger, M.A. Aegerter, H. Schmidt, Thin Solid Films, 1999, 351, 79-84
    29.Benardi MI B, Barrado C M, Soledade L E B, et al. Journal of Materials Science Materials in Electronics, 2002, 13, 403-408.
    30.Barth. 美國專利:US6663950
    31.J P Coleman, A T Lynch, John H, Solar Energy Materials & Solar Cells, 1999, 56, 375-394.
    32.Naoto TAKENO. Atlas of Eh-pH diagrams , 2005, National Institute of Advanced Industrial Science and Technology Research Center for Deep Geological Environments.
    33.H. F. Lu, R. Y. Hong, L. S. Wang, H. D. Xie , S. Q. Zhao, Materials Letters, 2012, 68, 237–239.
    34.Huaming Yang, Xiaolan Song, Xiangchao Zhang, Weiqin Ao, Guanzhou Qiu, Materials Letters, 2003 ,57 , 3124–3127
    35.孫國亮、陳韜文、鄭文偉。塗料工業,2010,長沙。
    36.孟杰、孫淑清、李婷、馬向輝、范軍剛。化學工業與工程,2007,天津大學。
    37.LI Li-Li, DUAN Xue-chen, Trans. Nonferrous Met. Soc. China, 2005, 15, 1356.
    38.YANG Fen, ZHANG Xue-jun, WU Xu, TIAN Fang, GAN Fu-xing, Nonferrous Met. Soc. China,2007 ,17, 626-632.
    39.曹忠良 王珍云。無機化學反應方程式手冊,1985, 87, 長沙。
    40.鄭華生。無機半微量分析,1985 ,歐亞書局。
    41.Dae-Wook Kim, Deok-Soo Kim, Young-Gon Kim, Young-Chai Kim, Seong-Geun Oh, Materials Chemistry and Physics, 2006, 97, 452–457.
    42.B. Oreal, Z. Crnjak-Orel, P. Bukovec, Journal of Non-crystalline Solids, 1994, 167, 272-288.
    43.B. Zhang, Y. Tian, J.X. Zhang, W. Cai, Materials Letters, 2011, 65, 1204–1206.
    44.Sanju Rani, Somnath C. Roy, N. Karar, M. C. Bhatnagar, Solid State Communications, 2007, 141, 214–218.
    45.A. Setaro, A. Bismuto, S. Lettieri, P. Maddalena, E. Comini, S. Bianchi, C. Baratto, G. Sberveglieri, Sensors and Actuators B, 2008, 130, 391–395.
    46.D. L. Dexter, J. Chem. Phys, 1953, 21, 836.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE