研究生: |
陳相榮 Chen, Hsiang-Jung. |
---|---|
論文名稱: |
可轉換式近紅外光之部分花青染料 ─ 蛋白質標記特定胞器與細胞顯影 Near-Infrared Fluorescence Switchable Merocyanine Dye for Organelle-Specific Protein Labeling and Imaging in Living Cells |
指導教授: |
陳貴通
Tan, Kui-Thong |
口試委員: |
王聖凱
Wang, Sheng-Kai 吳淑褓 Wu, Shu-Pao |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 132 |
中文關鍵詞: | 螢光探針 、部分花青染料 、細胞顯影 、不須清洗 |
外文關鍵詞: | fluorescent probe, merocyanine, cell image, no wash |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近來螢光分子探針蓬勃發展, 而多數近紅外光染料都是由花青染
料及羅丹名所衍生。 但因為結構上有著永久性的正電荷,花青染料和羅丹
名傾向於堆積在粒線體上,使它們不利於在特定胞器的細胞顯影上。 在本
論文中, 我們發展一個新穎可轉換式無電荷的近紅外光部分花青染料, 與
典型的部分花青染料做比較,他對於黏稠的環境更為敏感而且吸收及放射
波長紅移至紅外光區。 從不同 溶劑中測量的吸收和發射光譜,我們觀察到
相同的電子帶。因此,可以得出結論,涉及電荷轉移狀態的光化學在該系
統中 影響是較不大的。 藉由修飾上不同的蛋白質配體( SNAP-tag and hCAII
proteins) ,當這些探針偵測到目標蛋白質後展現出顯著的螢光增益( 最高
可達到 300 倍的螢光提升) 。 巨大的螢光增益可以使我們進行細胞影像時
免去洗滌的步驟, 並使在不同 的細胞胞器 的 SNAP-tag 蛋白質影像中達到
最低的螢光背景。 此蛋白質探針也成功地應於觀察細胞中變異之核纖層蛋
白。
Most near-infrared dyes are based on the derivatives of cyanine and
rhodamine. However, due to their permanent cationic charge, cyanine and
rhodamine tend to accumulate preferentially in the mitochondria which make
them not suitable for organelle-specific imaging. In this paper, we present a
novel charge-free fluorescence switchable near-IR dye based on merocyanine.
As compared to the classical merocyanines, the new dye is highly sensitive to
crowded surroundings and exhibits substantial red-shifted absorption and
emission within near-IR region. Computational study and emission spectra
measurement in different solvents showed that photochemistry involving the
charge transfer state is insignificant in this new dye. By incorporating a protein
specific ligand to the dye, the probes ( for SNAP-tag and hCAII proteins)
exhibit dramatic fluorescence increase ( up to 300-fold) upon binding with its
target protein. The large fluorescence enhancement enabled no-wash labeling
and imaging of the SNAP-tag protein in different subcellular compartments
with minimum background fluorescence. This protein probe was successfully
applied to visualize incomplete posttranslational processing of nuclear envelope
protein, Lamin A, in living cells.
1. J. A. Adams, Chem. Rev. 2001, 101, 2271-2290.
2. C. D. Williams, B. Oxon, H. Lond, Bull. W.H.O. 2003, 81, 912.
3. A. Radzicka, R. Wolfenden, Science 1995, 267, 90-93.
4. Sorbi, D.; Boynton, Am. J. Gastroenterol. 1999, 94, 1018.
5. O'Malley, J. P, Curr. Opin. Lipidol. 1999, 101, 407.
6. Selkoe, D. J, Physiol. Rev. 2001, 81, 741.
7. Lin, K.; Perni, R. B, Antimicrob. Agents Chemother. 2006, 50, 1813.
8. Edwards, D. R.; Murphy, G. Nature. 1998, 394, 527.
9. Ludwig, J. A.; Weinstein, J. N. Nat. Rev. Cancer. 2005, 5, 845-856.
10. Waggoner, A. Curr. Opin. Chem. Biol. 2006, 10, 62-66.
11. Goddard, J. P.; Reymond, J. L. Curr. Opin. Biotechnol. 2004, 15, 314.
12. Kobayashi, H., Ogawa, M., Alford, R., Choyke, P. L., & Urano, Y. Chem. Rev. 2009, 110, 2620-2640.
13. Johnson, I. The Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies, 11th Edition; Life Technologies Corporation, 2010.
14. Weissleder, R. Nat. Biotechnol. 2001, 19, 316-316.
15. Escobedo, J. O.; Rusin, O. Curr. Opin. Chem. Biol. 2010, 14, 64.
16. Schneckenburger, H.; Weber, P, J. Microsc. 2012, 245, 311.
17. Mizusawa, K., Takaoka, Y., Hamachi, I. J. Am. Chem. Soc. 2012, 134, 13386-13395.
18. Wu, L., Qu, X. Chemical Society Reviews. 2015, 44(10), 2963-2997.
19. Yoshii, T., Mizusawa, K., Takaoka, Y., Hamachi, I. J. Am. Chem. Soc. 2014, 136, 16635-16642.
20. Hussain, S. A. arXiv preprint arXiv 2009, 0908.1815.
21. Dimitrova, M. D., Georgiev, N. I., & Bojinov, V. B, J. Fluoresc. 2016, 26, 1091-1100.
22. Haugland, R. P. A Guide to Fluorescent Probes and Labelling Technologies, Invitrogen, Carlsbad, 2005, pp. 11 – 37
23. Park, S., Kim, J., Moran, A. M., & Scherer, N. F, Phys. Chem. 2011, 13, 214-223.
24. Uchiyama, S.; Takehira, K.; Yoshihara, T.; Tobita, S.; Ohwade, T. Org. Lett. 2006, 8, 5869.
25. Uchiyama, S.; Santa, T.; Okiyama, N.; Fukushima, T.; Imai, K. Biomed. Chromatogr. 2001, 15, 295.
26. Lee, M. H.; Kim, H. J.; Yoon, S.; Park, N.; Kim, J. S. Org. Lett. 2008, 10, 213.
27. Sainlos, M.; Iskenderian, W. S.; Imperiali, B. J. Am. Chem. Soc. 2009, 131,
6680.
28. Cohen, B. E., Pralle, A., Yao, X., Swaminath, G., Gandhi, C. S., Jan, Y. N., ... & Jan, L. Y. Proc. Natl. Acad. Sci. U.S.A. 2005, 102(4), 965-970.
29. Cohen, B. E.; McAnaney, T. B.; Park, E. S.; Jan, Y. N.; Boxer, S. G.; Jan, L.
Science 2002, 296, 1700.
30. D. L. Sackett, J. Wolff, Anal. Biochem. 1987, 167, 228-234.
31. Haidekker, M. A.; Theodorakis, E. A. J. Biol. Eng. 2010, 4, 1.
32. Rumble, C.; Rich, K.; He, G.; Maroncelli, M. C. J. Phys. Chem. A 2012, 116,
10786.
33. Benniston, A. C.; Copley, G. Phys. Chem. Chem. Phys. 2009, 11, 4124.
34. Zent-Gyorgyi, C.; Schmidt, B. F.; Creeger, Y.; Fisher, G. W.; Zakel, K. L.; Adler,
S.; Waggoner, A. Nat. Biotechnol. 2008, 26, 235.
35. Manivannan, R.; Satheshkumar, A.; Elango, K. P. Tetrahedron Lett. 2014, 55, 6281.
36. Deliconstantinos, G.; Villiotou, V.; Stavrides, J. C. Biochem. Pharmacol. 1995,
49, 1589.
37. Shinitzky, M. in Physiology of membrane fluidity, CRC Press, Boca Raton, 1984
38. (a)Nadiv, O.; Shinitzky, M.; Manu, H.; Hecht, D.; Roberts, C. T.; Leroith, D.;
Zick, Y. Biochem. J. 1994, 298, 443.
(b) Osterode, W.; Holler, C.; Ulberth, F. Diabetic.Med. 1996, 13, 1044.
39. Wu, Y. Y., Yu, W. T., Hou, T. C., Liu, T. K., Huang, C. L., Chen, I. C., & Tan, K. T , Chem. Commun. 2014, 50, 11507-11510.
40. Sarangi, M. K., Mitra, A. K., Sengupta, C., Ghosh, S., Chakraborty, S., Saha, C., & Basu, S , J. Phys. Chem. C 2013, 117(5), 2166-2174.
41. J. B. Birks, Org. Mol. photophys. Vol. 2, John Wiley & Sons, 1975.
42. J. Luo, Z. Xie, J. W. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, Chem. Commun. 2001, 1740-1741.
43. H. Tong, Y. Hong, Y. Dong, M. Häussler, Z. Li, J. W. Y. Lam, Y. Dong, H. H. Y. Sung, I. D. Williams, B. Z. Tang, J. Phys. Chem. B 2007, 111, 11817-11823.
44. H. Lis, N. Sharon, Chem. Rev. 1998, 98, 637-674.
45. T. Sanji, K. Shiraishi, M. Tanaka, ACS Appl. Mater 2008, 1, 270-273.
46. N. L. Rosi, C. A. Mirkin, Chem. Rev. 2005, 105, 1547-1562.
47. S. Basiruddin, A. Saha, N. Pradhan, N. R. Jana, Langmuir 2010, 26, 7475-7481.
48. Carreon, J. R., Stewart, K. M., Mahon, K. P., Shin, S., & Kelley, S. O, Bioorg. Med. Chem. Lett. 2007, 17(18), 5182-5185.
49. J. M. Gallas, M. Eisner, Photochem. Photobiol. 1987, 45, 595-600.
50. MacNevin, C. J., Gremyachinskiy, D., Hsu, C. W., Li, L., Rougie, M., Davis, T. T., & Hahn, K. M, Bioconjugate Chem. 2013, 24(2), 215-223.
51. Hou, T. C., Wu, Y. Y., Chiang, P. Y., & Tan, K. T, Chem. Sci. 2015, 6(8), 4643-4649.
52. Yasueda, Y.; Tamura, T.; Fujisawa, A.; Kuwata, K.; Tsukiji, S.; Kiyonaka, S.; Hamachi, I. J. Am. Chem. Soc. 2016, 138, 7592.
53. Zhu, H.; Fan, J.; Du, J.; Peng, X. Acc. Chem. Res. 2016, 49, 2115.
54. Liu, Y.; Zhou, J.; Wang, L.; Hu, X.; Liu, X.; Liu, M.; Cao, Z.; Shangguan, D.; Tan, W. J. Am. Chem. Soc. 2016, 138, 12368.
55. Umezawa, K.; Citterio, D.; Suzuki, K. Anal. Sci. 2014, 30, 327.
56. Kim, E.; Yang, K. S.; Kohler, R. H.; Dubach, J. M.; Mikula, H.; Weissleder, R. Bioconjugate Chem. 2015, 26, 1513.
57. Kulinich, A. V.; Derevyanko, N. A.; Mikitenko, E. K.; Ishchenko, A. A. J. Phys. Org. Chem. 2011, 24, 732.
58. MacNevin, C. J.; Gremyachinskiy, D.; Hsu, C.-W.; Li, L.; Rougie, M.; Davis, T. T.; Hahn, K. M. Bioconjugate Chem. 2013, 24, 215.
59. Telmer, C. A.; Verma, R.; Teng, H.; Andreko, S.; Law, L.; Bruchez, M. P. ACS chem. biol. 2015, 10, 1239.
60. Wang, C.; Song, X.; Chen, L.; Xiao, Y. Biosens Bioelectron. 2017, 91, 313.
61. Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y. Chem. Rev. 2010, 110, 2620.
62. Kubota, R.; Hamachi, I. Chem. Soc. Rev. 2015, 44, 4454.
63. Zhai, D.; Xu, W.; Zhang, L.; Chang, Y.-T. Chem. Soc. Rev. 2014, 43, 2402.
64. Supuran, C. T. Nat Rev Drug Discov. 2008, 7, 168.
65. K. A. McCall, C. C. Huang, C. A. Fierke, J. Nutr. 2000, 130, 1437S-1446S.
66. Keppler, A.; Gendreizig, S.; Gronemeyer, T.; Pick, H.; Vogel, H.; Johnsson, K. Nat. Biotechnol. 2002, 21, 86 -89.
67. A. Gautier, E. Nakata, G. Lukinavicius, K. T. Tan, K. Johnsson, J. Am. Chem. Soc. 2009, 131, 17954-17962.
68. C. Chidley, H. Haruki, M. G. Pedersen, E. Muller, K. Johnsson, Nat. Chem. Biol. 2011, 7, 375-383.
69. G. Lukinavičius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang, T. Plass, V. Mueller, L. Reymond, I. R. Corrêa Jr, Z.-G. Luo, Nat. Chem. 2013, 5, 132-139.
70. P.-M. Shih, T. K. Liu, K.-T. Tan, Chem. Commun. 2013, 49, 6212-6214.
71. M. A. Brun, K. T. Tan, E. Nakata, M. J. Hinner, K. Johnsson, J. Am. Chem. Soc. 2009, 131, 5873-5884.
72. T.-K. Liu, P.-Y. Hsieh, Y. D. Zhuang, C. Y. Hsia, C. L. Huang, H. P. Lai, H. S. Lin, I. C. Chen, H. Y. Hsu, K. T. Tan, ACS Chem. Biol. 2014, 9, 2359-2365.
73. T. Komatsu, K. Johnsson, H. Okuno, H. Bito, T. Inoue, T. Nagano, Y. Urano, J. Am. Chem. Soc. 2011, 133, 6745-6751.
74. X. Sun, A. Zhang, B. Baker, L. Sun, A. Howard, J. Buswell, D. Maurel, A. Masharina, K. Johnsson, C. J. Noren, ChemBioChem. 2011, 12, 2217-2226.
75. E. Prifti, L. Reymond, M. Umebayashi, R. Hovius, H. Riezman, K. Johnsson, ACS Chem. Biol. 2014, 9, 606-612.
76. Lukinavičius, G.; Umezawa, K.; Olivier, N.; Honigmann, A.; Yang, G.; Plass, T.; Mueller, V.; Reymond, L.; Corrêa Jr, I. R.; Luo, Z.-G.; Schultz, C.; Lemke, E. A.; Heppenstall, P.; Eggeling, C.; Manley, S.; Johnsson, K. Nat Chem 2013, 5, 132.
77. Broers, J. L.; Ramaekers, F. C.; Bonne, G.; Yaou, R. B.; Hutchison, C. J. Physiol. rev. 2006, 86, 967.
78. Coffinier, C.; Hudon, S. E.; Farber, E. A.; Chang, S. Y.; Hrycyna, C. A.; Young, S. G.; Fong, L. G. Proc Natl Acad Sci U S A 2007, 104, 13432.
79. Wang, Y.; Ostlund, C.; Choi, J. C.; Swayne, T. C.; Gundersen, G. G.; Worman, H. J. Nucleus (Austin, Tex.) 2012, 3, 452.
80. Liu, Q.; Kim, D. I.; Syme, J.; LuValle, P.; Burke, B.; Roux, K. J. PloS one 2010, 5, e10874.