簡易檢索 / 詳目顯示

研究生: 李鴻慶
Li, Hong Ching
論文名稱: 利用金屬輔助化學蝕刻粗化方式製作多晶太陽能電池
Fabrication of Multicrystalline Silicon Solar Cells with Surface Texturing by Metal-Assisted Chemical Etching (MAE)
指導教授: 黃惠良
Hwang, Huei Liang
口試委員: 林堅楊
Lin, Jian Yang
張廖貴術
Zhang Liao, Guei Shu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 61
中文關鍵詞: 多晶矽太陽能電池表面粗化金屬輔助化學性蝕刻
外文關鍵詞: multicrystalline silicon, solar cell, surface texturing, metal assisted etching
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,利用金屬輔助化學性蝕刻作為多晶矽的表面粗化方式來製作太陽能池。在金屬輔助化學性蝕刻的過程中用了兩種蝕刻液,一個為HF、H2O2及H2O的混和液,另一個為HF、Fe(NO3)3及H2O的混和液。銀則被用來當作金屬輔助化學性蝕刻中的金屬。蝕刻後的表面藉由SEM以及反射率的量測來分析表面結構以及表面的反射率。利用金屬輔助化學性蝕刻的表面粗化方式,產生了許多不同的表面結構,包括碗狀、錐狀及高深寬比的柵欄狀結構。蝕刻後的表面反射率平均在10%以下,而在短波長400~600nm的範圍反射率更只有2~3%。利用HF/Fe(NO3)3/H2O的蝕刻液製作出的太陽能電池效率為8.24%,而利用HF/H2O2/H2O的蝕刻液製作出的太陽能電池效率為11.81%。


    In this thesis, the surface texturing for multicrystalline silicon by using metal-assisted chemical etching (MAE) method was carried out to fabricate solar cell. There were two kinds of etchant used in the MAE process. One was a mixture of HF, H2O2 and H2O and the other was a mixture of HF, Fe(NO3)3 and H2O. The metal used in the MAE process was Ag. The textured surface morphologies were analyzed by SEM and reflectance measurement. The different morphologies including bowl, cone and grating with high aspect ratio were fabricated. The average reflectance of textured surface is below 10% and the lowest reflectance is about 2~3% in the range of 400~600 nm. The efficiency of solar cell fabricated with HF/Fe(NO3)3/H2O is 8.24% and fabricated with HF/H2O2/H2O is 11.81%.

    Chapter 1 Introduction 1.1 Background 1.2 Motivation 1.3 Objectives of the thesis Chapter 2 Review of the Literature 2.1 The Nature of Sunlight 2.2 The Solar Cell 2.3 The I-V Curve Characteristics of Solar Cell 2.3.1 Dark Current and Short Circuit Current 2.3.2 Open Circuit Voltage 2.3.3 Fill Factor 2.3.4 Efficiency 2.3.5 Series Resistance and Shunt Resistance 2.4 Metal-assisted chemical etching 2.4.1 Introduction 2.4.2 Chemical Reactions 2.4.3 The Etching Process Chapter 3 Research Methods 3.1 Experiment for Surface Texture 3.2 Process Flow 3.3 Experiment Equipment and Measurement Tools 3.3.1 Ytterbium doped fiber laser (YDFLs) 3.3.2 RF sputter system 3.3.3 High Temperature Diffusion / Annealing Furnace 3.3.4 E-beam Evaporator 3.3.5 Plasma Enhanced Chemical Vapor Deposition (PECVD) 3.3.6 Field Emission Scanning Electron Microscope (SEM) 3.3.7 QE measurement 3.3.8 Solar Simulator Chapter 4 Results and Discussion 4.1 Surface Structures 4.1.1 MAE using H2O2 as the oxidant 4.1.2 MAE using Fe(NO3)3 as the oxidant 4.2 Performance of solar cells 4.2.1 Efficiency of solar cells 4.2.2 External quantum efficiency (EQE) measurement 4.2.3 Minority carrier life time measurement Chapter 5 Conclusion and Future Work 5.1 Conclusion 5.2 Future work References

    [1]de Vries BJM, van Vuuren DP, Hoogwijk MM. Energy Policy 35 (2007) 2590–610.
    [2]Govinda R. Timilsinaa, Lado Kurdgelashvilib, Patrick A. Narbel, Renewable and Sustainable Energy Reviews 16 (2012) 449– 465.
    [3]KRI Report NO.8: Solar Cells, February 2005.
    [4]M. Planck, On the Law of Distribution of Energy in the Normal Spectrum, Annalen der Physik 4 (1901), pp. 553-563.
    [5]J. E. Parrott, Choice of an equivalent black-body solar temperature, Solar Energy 51(3) (1993), pp. 195-195.
    [6]National Renewable Energy Laboratory, Reference Solar Spectral Irradiance: Air Mass 1.5, http://rredc.nrel.gov/solar/spectra/am1.5.
    [7]http://www.pveducation.org.
    [8]Jenny Nelson, The Physics of Solar Cells (2003) 11.
    [9]X. Li , P. W. Bohn , Appl. Phys. Lett. 77 (2000), 2572 .
    [10]W. K. Choi , T. H. Liew , M. K. Dawood , Nano Lett. 8 (2008), 3799 .
    [11]C. Chartier , S. Bastide , C. Levy-Clement , Electrochimica Acta 53 (2008), 5509.
    [12]Kuiqing Peng, Juejun Hu, Yunjie Yan, Yin Wu, Hui Fang, Ying Xu, ShuitTong Lee, Jing Zhu, Adv. Funct. Mater. 16 (2006), 387–394.
    [13]Zhipeng Huang ,* Nadine Geyer ,* Peter Werner , Johannes de Boor , and Ulrich Gösele, Adv. Mater 23 (2011), 285–308.
    [14]S. I. Kablukov,* E. A. Zlobina, E. V. Podivilov, and S. A. Babin, Optics Letters 37 (2012) 13.
    [15]陳學龍,王水進〝IZO 透明金屬薄膜之研製及其在GaN 基LEDs
    之應用研究〞,國立成功大學微電子工程研究所2002.
    [16]Tomas Markvart, ”Solar electricity” JOHN WILEY &SONS (1994).
    [17]https://www.mems-exchange.org.
    [18]Jan Schmidt1, Mark Kerr and Andr´es Cuevas, Semicond. Sci. Technol. 16 (2001) 164–170.
    [19]Sciencetech web page, http://0rz.tw/6a48z.
    [20]http://www.renewableenergyworld.com.
    [21]http://www.solarsimulator.com

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE