研究生: |
鄭宇維 Cheng, Yu-Wei |
---|---|
論文名稱: |
應用於第五代通訊系統之毫米波發射機前端電路設計 Design of Millimeter-Wave Transmitter Front-End for 5G Communications |
指導教授: |
劉怡君
Liu, Yi-Chun |
口試委員: |
徐碩鴻
Hsu, Shuo-Hung 李俊興 Li, Chun-Hsing |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2021 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 天線陣列 、開關式相移器 、可調控增益放大器 、低雜訊放大器 、功率放大器 、毫米波發射機 、第五代通訊系統 |
外文關鍵詞: | switch-type phase shifter |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現代通訊系統不斷追求更快的傳輸速度,由著名的雪農理論(Shannon’s Theorem)了解頻寬、訊雜比與通道容量的關係,為了要提高傳輸速度,第五代及未來的通訊系統將要使用到毫米波(mm-Wave)或是更高頻率的頻段。本論文完成應用於第五代陣列無線通訊系統傳輸端之設計、模擬與量測。
由於第五代通訊系統操作於毫米波高頻頻段,空氣中傳輸的損耗相當大,導致有傳輸距離短、無法穿透固體表面等缺點,藉由陣列天線增強傳輸訊號,和波束成型技術增加等效全向輻射功率(Equivalent Isotropic Radiated Power,EIRP),使傳輸及接收端都有更好的表現。
第二章的陣列貼片天線,使用高頻PCB RT/duroid5880製作,並於毫米波天線實驗室量測,頻率28GHz時得增益12.1dBi、方向性13dBi、效率82%。
第三章的相移器為波束成型的關鍵元件,採用TSMC CMOS 90nm製程,選擇五位元設計11.25度的解析度,使用開關式方便調控及量測,NMOS扮演開關及電容的角色,實現5.35度相位誤差(Phase Error)的五位元相移器。
第四章為可調控增益放大器,採用TSMC CMOS 90nm製程,為了調控增益時有最小的相位變化,加入相位補償機制,藉由電容電感相位變化相反的特性設計,增益調控範圍為6.6dB。
第五章為傳輸端的整合,包括五位元相移器(5-bit Phase Shifter)、可調控增益放大器(Variable Gain Amplifier)、低雜訊放大器(Noise Amplifier)、功率放大器(Power Amplifier),採用TSMC CMOS 90nm製程,實現26-32.4dB增益、8.9度相位誤差、9.3dBm 1-dB壓縮點輸出功率、功率消耗120.7、面積3mm2。
Fast-growing wireless communication systems demand for extremely high-data-rate transmission. Comprehend the relationship between bandwidth, signal-to-noise ratio, and channel capacity from the famous Shannon’s Theorem. The fifth-generation and future communication systems will use millimeter wave or higher frequency bands. But high-frequency transmissions suffer from several challenges, like more vulnerable to blockage, huge path loss, etc.
Since the 5G technology operate in the millimeter-wave band, the transmission loss quite large, resulting in a very short transmission distance. Phased-array antenna with beamforming technology effectively overcome this challenge. This thesis presents a 28 GHz phased-array transmitter for 5G wireless communications.
The first 28 GHz phased-array antenna was designed and implemented in PCB RT/duroid5880, which is suitable for 5G devices. Measured in the millimeter wave antenna laboratory at NTUST. It has a gain of 12.1 dBi, a directivity of 13 dBi, and antenna efficiency of 82% at 28 GHz.
The second 28 GHz phase shifter plays an important role in beamforming technology has been designed and fabricated on TSMC 90-nm CMOS process. 5-bit switch-type phase shifter design with a resolution of 11.25 degree. The measured rms phase error of 5.3 degree, rms gain error of 2.39 dB, and insertion loss is -18±4.3 dB for all 32 states at 28 GHz. The third 28 GHz variable gain amplifier has been designed and fabricated on TSMC 90-nm CMOS process. A phase compensation circuit is added to minimize phase variation during gain control.
The last work in this thesis integrates the work of the previous chapters and presents a 28 GHz phased-array transmitter, including 5-bit phase shifter, variable gain amplifier, low noise amplifier, and power amplifier in TSMC 90-nm CMOS technology. The transmitter has phase scan and gain control capabilities, which is applicable to 5G micro base stations. The measured gain is 26-32.4 dB, rms phase error of 8.9 degree at 28 GHz. At 1-dB compression point, OP1dB is 9.3 dBm. The power consumption is 120 mW .
[1] W. Li, Y. Chiang, J. Tsai, H. Yang, J. Cheng and T. Huang, "60-GHz 5-bit Phase Shifter With Integrated VGA Phase-Error Compensation," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 3, pp. 1224-1235, March 2013, doi: 10.1109/TMTT.2013.2244226.
[2] U. Kodak and G. M. Rebeiz, "Bi-directional flip-chip 28 GHz phased-array core-chip in 45nm CMOS SOI for high-efficiency high-linearity 5G systems," 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2017, pp. 61-64, doi: 10.1109/RFIC.2017.7969017.
[3] F. Meng, K. Ma, K. S. Yeo and S. Xu, "A 57-to-64-GHz 0.094-mm2 5-bit Passive Phase Shifter in 65-nm CMOS," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 5, pp. 1917-1925, May 2016, doi: 10.1109/TVLSI.2015.2469158.
[4] J. -H. Tsai, Y. -L. Tung and Y. -H. Lin, "A 27–42-GHz Low Phase Error 5-Bit Passive Phase Shifter in 65-nm CMOS Technology," in IEEE Microwave and Wireless Components Letters, vol. 30, no. 9, pp. 900-903, Sept. 2020, doi: 10.1109/LMWC.2020.3012459.
[5] F. Ellinger, U. Jörges, U. Mayer, R. Eickhoff , “Analysis and compensation of phase variations versus gain in amplifiers verified by SiGe HBT cascode RFIC,” IEEE Transactions on Microwave Theory and Techiqued.Aug.2009.
[6] Q. Zhang, C. Zhao, Y. Yu, H. Liu, Y. Wu and K. Kang, "A Ka-Band CMOS Variable Gain Amplifier with High Gain Resolution and Low Phase Variation," 2020 IEEE Asia-Pacific Microwave Conference (APMC), 2020, pp. 275-277, doi: 10.1109/APMC47863.2020.9331365.
[7] J. Tsai and C. Lin, "A 40-GHz 4-Bit Digitally Controlled VGA With Low Phase Variation Using 65-nm CMOS Process," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 11, pp. 729-732, Nov. 2019, doi: 10.1109/LMWC.2019.2942013.
[8] C. W. Byeon, S. H. Lee, J. H. Lee and J. H. Son, "A $Ka$ -Band Variable-Gain Amplifier With Low OP1dB Variation for 5G Applications," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 11, pp. 722-724, Nov. 2019, doi: 10.1109/LMWC.2019.2940318.
[9] B. Sadhu, J. F. Bulzacchelli and A. Valdes-Garcia, "A 28GHz SiGe BiCMOS phase invariant VGA," 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2016, pp. 150-153, doi: 10.1109/RFIC.2016.7508273.
[10] S. Mondal, R. Singh, A. I. Hussein and J. Paramesh, "A 25–30 GHz Fully-Connected Hybrid Beamforming Receiver for MIMO Communication," in IEEE Journal of Solid-State Circuits, vol. 53, no. 5, pp. 1275-1287, May 2018, doi: 10.1109/JSSC.2018.2789402.
[11] Z. Chen, H. Gao, D. Leenaerts, D. Milosevic and P. Baltus, "A 29–37 GHz BiCMOS Low-Noise Amplifier with 28.5 dB Peak Gain and 3.1-4.1 dB NF," 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2018, pp. 288-291, doi: 10.1109/RFIC.2018.8429020.
[12] M. Elkholy, S. Shakib, J. Dunworth, V. Aparin and K. Entesari, "A Wideband Variable Gain LNA With High OIP3 for 5G Using 40-nm Bulk CMOS," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 1, pp. 64-66, Jan. 2018, doi: 10.1109/LMWC.2017.2779832.
[13] D. Manente, F. Padovan, D. Seebacher, M. Bassi and A. Bevilacqua, "A 28-GHz Stacked Power Amplifier with 20.7-dBm Output P1dB in 28-nm Bulk CMOS," in IEEE Solid-State Circuits Letters, vol. 3, pp. 170-173, 2020, doi: 10.1109/LSSC.2020.3009973.
[14] C. Yu, J. Feng and D. Zhao, "A 28-GHz CMOS Broadband Single-Path Power Amplifier with 17.4-dBm P1dB for 5G Phased-Array," ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC), 2018, pp. 38-41, doi: 10.1109/ESSCIRC.2018.8494246.
[15] Y. Zhang and P. Reynaert, "A high-efficiency linear power amplifier for 28GHz mobile communications in 40nm CMOS," 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2017, pp. 33-36, doi: 10.1109/RFIC.2017.7969010.
[16] C. -N. Chen et al., "38-GHz Phased Array Transmitter and Receiver Based on Scalable Phased Array Modules With Endfire Antenna Arrays for 5G MMW Data Links," in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 1, pp. 980-999, Jan. 2021, doi: 10.1109/TMTT.2020.3035091.
[17] K. Kolb et al., "A 28 GHz Highly Accurate Phase- and Gain-Steering Transmitter Frontend for 5G Phased-Array Applications," 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS), 2020, pp. 432-435, doi: 10.1109/MWSCAS48704.2020.9184577.
[18] K. Kibaroglu, M. Sayginer and G. M. Rebeiz, "A Low-Cost Scalable 32-Element 28-GHz Phased Array Transceiver for 5G Communication Links Based on a $2\times 2$ Beamformer Flip-Chip Unit Cell," in IEEE Journal of Solid-State Circuits, vol. 53, no. 5, pp. 1260-1274, May 2018, doi: 10.1109/JSSC.2018.2791481.
[19] K. Kibaroglu, M. Sayginer and G. M. Rebeiz, "A quad-core 28–32 GHz transmit/receive 5G phased-array IC with flip-chip packaging in SiGe BiCMOS," 2017 IEEE MTT-S International Microwave Symposium (IMS), 2017, pp. 1892-1894, doi: 10.1109/MWSYM.2017.8059027.