研究生: |
范振琳 Fan, Chen-Lin |
---|---|
論文名稱: |
溫度對Co50Fe50與(Co50Fe50)80B20薄膜磁特性與粗糙度之影響 Temperature effect on the magnetic properties and roughness of Co50Fe50 and (Co50Fe50)80B20 thin films |
指導教授: |
李志浩
Lee, Chih-Hao 林宏基 Lin, Hong-Ji |
口試委員: |
林滄浪
Lin, Tsang-Lang 朱鵬維 Chu, Peng-Wei |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 先進光源科技學位學程 Degree Program of Science and Technology of Synchrotron Light Source |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 117 |
中文關鍵詞: | 製備溫度 、退火溫度 、粗糙度 、X光反射 、磁性薄膜 |
外文關鍵詞: | growth temperature, annealing temperature, roughness, X-ray reflectivity, magnetic thin film |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗致力於研究不同退火溫度(室溫以及350 ℃)狀況下鈷鐵(比例為50:50)與鈷鐵硼(比例為40:40:20)結構以及磁特性之影響。我們利用高真空之磁控濺鍍法製備樣品,並於最上層覆蓋2 nm的碳薄膜。在結構上,我們利用X光繞射儀來觀察兩種薄膜的結晶狀況,並且使用X光反射檢測並比較其密度的差異、厚度以及粗糙度的變化量。我們觀察到在室溫下製備之樣品中,鈷鐵薄膜不論是否退火皆無法使其中的鈷鐵結晶化,但是鈷鐵硼薄膜則不同,在退火後的樣品中可以觀測到結晶的鈷鐵(002)的繞射峰,可能因為其中的硼存在於格隙之間以降低了結晶的能量。在粗糙度的部分,也可以明顯的由其斜率得知不論在室溫製備下的何種狀況,鈷鐵硼的粗糙度皆小於鈷鐵的薄膜。而在磁性方面,能夠觀察到鈷鐵薄膜的矯頑力會有大幅度的增加為原本的25倍左右,但是鈷鐵硼薄膜的矯頑力相較之下則是相對小幅的9倍而已。而350 ℃下製備則截然不同,鈷鐵薄膜不論是否退火皆展現出良好的鈷鐵(002)繞射峰,相比於室溫下製備,在製備過程中給予能量,能更有效的使薄膜結晶化,但鈷鐵硼薄膜則無法觀察到繞射峰,而在粗糙度的部分,會與室溫下製備完全相反,不論退火與否,鈷鐵的粗糙度明顯小於鈷鐵硼之薄膜。而在磁性方面,能夠觀察到鈷鐵薄膜的矯頑力經退火後雖有明顯的增加,但是退火後依舊展現出良好的方正性,與鈷鐵薄膜不同,鈷鐵硼薄膜雖然擁有較小的矯頑力,但退火後卻無法改善其方正性。
In this study, we focused to study the annealing temperature effects on the Co50Fe50 and (Co50Fe50)80B20 structures and magnetic properties under different annealing temperatures (room temperature and 350 ℃). We use high-vacuum magnetron sputtering to prepare samples, and cover the capping layer with a 2 nm C thin film. In the structural study, we use X-ray diffraction (XRD) to observe the crystallization of the thin films, and use X-ray reflection (XRR) to detect and compare the difference in density, thickness and roughness. We found that in the CoFe thin films, the CoFe thin films can’t be crystallized at whatever annealing or not, but the (Co50Fe50)80B20 thin films can observe the diffraction peak of the crystallized CoFe(002) after annealing. In the roughness measurement, it can also be clearly seen from its slope of XRR curve that the roughness of (Co50Fe50)80B20 thin films are less than the Co50Fe50 thin films under all the conditions in the experiment. In the magnetic properties, it can observe clearly that the coercivity of the Co50Fe50 thin films increase greatly 25 times after annealing, but the (Co50Fe50)80B20 thin films just increase 9 times. However, the Co50Fe50 thin films at the 350 ℃ during sputtering show a better diffraction peak of CoFe(002) regardless of whether it is prepared at room temperature. In XRD, the diffraction peak cannot be observed in the (Co50Fe50)80B20 thin films, and the roughness part is completely opposite to that prepared at room temperature. The roughness of the thin films are obviously smaller than that of the (Co50Fe50)80B20 film regardless of annealing. In MOKE, it can be observed that although the coercivity of the Co50Fe50 thin films increases significantly after annealing, it still shows good squareness after annealing. Unlike the Co50Fe50 thin films, the (Co50Fe50)80B20 thin films have a smaller coercivity, but its squareness cannot be improved after annealing.
1.Kittel, C. and P. McEuen, Introduction to solid state physics. Vol. 8. 1976: Wiley New York.
2.https://techomat.wordpress.com/2015/05/31/secret-of-magnetism/.
3.李景明、張慶瑞,磁性技術手冊─第二章,中華民國磁性技術協會(2002).
4.Robert C. OHandley, “Modern Magnetic Materials: Principles and Applications” Wiley inc. (1999).
5.Knight, Jones, & Field, "College Physics" (2007) p. 815.
6.Boyer, Timothy H. (1988). "The Force on a Magnetic Dipole". American Journal of Physics 56 (8): 688–692.
7.Hu, A.Y. and H.Y. Wang, The exchange interaction values of perovskite-type materials EuTiO3 and EuZrO3. Journal of Applied Physics, 2014. 116(19): p. 7.
8.Oogane, M., et al., Magnetic damping in ferromagnetic thin films. Japanese Journal of Applied Physics,2006 , Volume 45, Part 1, Number 5A
9.鍾睿騏, 摻雜銅於序化鐵銠薄膜對結構、磁性之影響,清華大學碩士論文(2020).
10.Bhatti, S., et al., Spintronics based random access memory: a review. Materials Today, 2017. 20(9): p. 530-548.
11.Djayaprawira, D.D., et al., 230% room-temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions. Applied Physics Letters, 2005. 86(9): p. 3.
12.Negusse, E., et al., Magnetic characterization of CoFeB/MgO and CoFe/MgO interfaces. Applied Physics Letters, 2007. 90(9): p. 3.
13.陳建人, 真空技術與應用,國家實驗研究院儀器科技研究中心出版. 2008.
14.吳自勤、王兵、孫霞, 薄膜生長,191-190、213-214. 科學出版社, 2001.
15.原著 麻蒔立男、陳國榮等人譯, 薄膜製備技術基礎(原著第4版),化學工業出版社.2009.
16.Bendjerad, A., et al., Modeling of magnetic properties of iron thin films deposited by RF magnetron sputtering using Preisach model. 2016. 13(2): p. 229-238.
17.http://mems.mt.ntnu.edu.tw/document/class/97%E4%B8%8A%E5%AD%B8%E6%9C%9F/%E6%A9%9F%E9%9B%BB%E6%95%B4%E5%90%88%E6%8A%80%E8%A1%93(%E4%B8%80)/%E5%AF%A6%E4%BD%9C%E6%8A%80%E8%A1%93%E8%A3%9C%E5%85%85%E8%B3%87%E6%96%99/%E6%BF%BA%E9%8D%8D%E6%8A%80%E8%A1%93.pdf.
18.黃子文, "利用臨場 X 光反射率量測法研究 Ta2O5 薄膜結構與表面形貌之變化," 國立清華大學碩士論文. 2002.
19.Heilmann, R.K. and R.M. Suter, In situ specular and diffuse x-ray reflectivity study of growth dynamics in quench-condensed xenon films. Physical Review B, 1999. 59(4): p. 3075-3085.
20.Levinstein, H., The growth and structure of thin metallic films. Journal of Applied Physics, 1949. 20(4): p. 306-315.
21.Mattox, D.J.J.o.V.S., S. Technology A: Vacuum, and Films, Particle bombardment effects on thin‐film deposition: A review. Journal of Vacuum Science & Technology, 1989. 7(3): p. 1105-1114.
22.Karabacak, T., H. Guclu, and M.J.P.R.B. Yuksel, Network behavior in thin film growth dynamics. Physical Review B, 2009. 79(19): p. 195418.
23.F.C.Frank, and J.H.van der Merwe,Proc.Roy.Soc..London A 198,205 (1949).
24.M.Volmer, and A. Weber,Z.Phys.Chem. 119,277 (1926). .
25.I.N.Stranski, and Von L.Krastanow,Akad.Wiss.Lit.Mainz Math.Natur.K1.Iib 146,797 (1939). .
26.https://www.nsrrc.org.tw/.
27.李文麐, 東海大學碩士論文. 2010.
28.https://www.globalsino.com/EM/page3882.html.
29.汪建明主編, "材料分析," 中國材料學會.
30.http://physics.valpo.edu/staff/arichter/XRR.htm.
31.https://highscope.ch.ntu.edu.tw/wordpress/?p=1595.
32.Kanak, J., et al., X-ray diffraction analysis and Monte Carlo simulations of CoFeB-MgO based magnetic tunnel junctions. Journal of Applied Physics, 2013. 113(2): p. 6.
33.Yoneda, Y., Anomalous Surface Reflection of X Rays. Physical Review, 1963. 131(5): p. 2010-2013.
A1.蔡坤昇, 以磁控濺鍍製備鐵銠薄膜之研究, 清華大學碩士論文, 2015.
A2.Barua, R., F. Jimenez-Villacorta, and L.H. Lewis, Predicting magnetostructural trends in FeRh-based ternary systems. Applied Physics Letters, 2013. 103(10): p. 5.
A3.Loving, M.G., et al., Strain-tuning of the magnetocaloric transition temperature in model FeRh films. Journal of Physics D-Applied Physics, 2018. 51(2): p. 12.
A4.M.Goertz, J. Appl. Phys., 22,964 (1951).