簡易檢索 / 詳目顯示

研究生: 荷涼凡
Pham, Lan-Huong
論文名稱: 某些t-模之半週期的超越性
Transcendence of quasi-periods for certain t-modules
指導教授: 張介玉
Chang, Chieh-Yu
口試委員: 于靖
Yu, Jing
魏福村
Wei, Fu-Tsun
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 23
中文關鍵詞: t-模Drinfeld 模半週期函數
外文關鍵詞: t-modules, Drinfeld modules, quasi-periodic functions
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在 [C13] 這篇論文當中, 考慮秩為 2 的 Drinfeld 模基於 Carlitz 模擴張的 t 模,
    Chang 引進了秩為 2 的 Drinfeld 模的第三類週期為此 t 模週期的第二個座標.
    在此篇論文中, 我們具體導出了此 t 模的準週期為 Carlitz 模的基本週期, 以及
    此 Drinfeld 模的週期, 準週期, 對數, 準對數的代數組合. 接著, 我們利用了
    Drinfeld 模的 Legendre 關係以及 Chang-Papanikolas 在 Drinfeld 模週期的
    代數獨立性, 我們證明了此 t 模的準週期非零情況下的超越性.


    In [C13], Chang introduced periods of the third kind of a rank 2 Drinfeld module as the second coordinate of periods of at-module which is formed by the extension of the Drinfeld module by the Carlitz module. In this thesis, we find the quasi-periods of the t-module explicitly as algebraic combinations of the fundamental period of the Carlitz module, and periods, quasi-periods, logarithms, and quasi-logarithms of the Drinfeld module. Then, using the Legendrerelation for Drinfeld modules and an algebraic independence result of Chang and Papanikolas, we prove the transcendence of quasi-periods of this t-module whenever it is nonzero.

    Abstract Contents 1. Introduction ---------------------------------------------- 2 2. Preliminaries --------------------------------------------- 5  2.1 Anderson t-module and its quasiperiodic function ------- 5  2.2 Periods of the third kind ------------------------------ 7 3. Transcendence results ------------------------------------- 10  3.1 Quasi-periods ------------------------------------------ 10  3.2 Main result -------------------------------------------- 18

    [A86] Anderson. G. W. , t-motives, Duke Math. J. 53, 457{502 (1986)
    [BP02] Brownawell, W.D., Papanikolas, M.A. Linear independence of Gamma values in positive characteristic. J. Reine Angew. Math. 549, 91{148 (2002)
    [C13] Chang, C.-Y. On periods of the third kind for rank 2 Drinfeld module. Math. Z. 273, 921{933 (2013)
    [CP12] Chang, C.-Y., Papanikolas, M.A. Algebraic independence of periods and logarithms of Drinfeld modules. With an appendix by Brian Conrad. J. Am. Math. Soc. 25, 123{150 (2012)
    [Dr74] Drinfeld, V.G.: Elliptic modules. Math. USSR-Sb. 23, 561{592 (1974)
    [Go96] Goss, D. Basic Structures of Function Field Arithmetic.Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 35. Springer, Berlin (1996)
    [PR03] Papanikolas, M.A., Ramachandran, N.: A Weil-Barsotti formula for Drinfeld modules. J. Number Theory 98, 407{431 (2003)
    [Ro02] Rosen M. Number Theory in Function Fields. Graduate Texts in Mathematics 210. Springer, New York (2002)
    [T04] Thakur, D.S. Function Field Arithmetic. World Scienti c Publishing, River Edge (2004)
    [Yu90] Yu, J. On periods and quasi-periods of Drinfeld modules. Compos. Math. 74, 235{245 (1990)
    [W95] Woo, S.S.: Extensions of Drinfeld modules of rank 2 by the Carlitz modules. Bull. Korean Math Soc. 32, 251{257 (1995)

    QR CODE