簡易檢索 / 詳目顯示

研究生: 羅允成
Lo, Yun-Cheng
論文名稱: 多環燃燒器中火焰交互作用及最佳性能設計
Flame Interactions and Optimal Performance Design of Multi-Ring Combustors
指導教授: 陳理定 博士
Chen, Li-Ting
楊鏡堂 博士
Yang, Jing-Tang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 114
中文關鍵詞: 多環燃燒器火焰交互作用燃料當量比粒子影像測速儀
外文關鍵詞: multi-ring combustor, flame interaction, equivalence ratio, PIV
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主旨為探討多環燃燒器之火焰交互作用及最佳性能設計,透過數值計算(CFD-RC)與實驗量測溫度、流場結構(PIV)與污染物等方法,探討環間距比(S/d)與燃料當量比(□)所產生之不同火焰交互作用對其燃燒性能之影響。分析結果發現,多環燃燒器的幾何突張結構所形成之駐焰效果及環與環間的預熱效果,皆可提供燃燒器在貧油條件下穩定操作,利用此特性設計出多環燃燒器之最佳操作參數S/d = 1.67、□□值內環為0.8、中環為1.1、外環為1.1,其特性已達高效能、低污染之目標。
    研究結果顯示,當改變環間距比時,對於燃燒場內流場結構的影響甚大,故產生不同程度之火焰交互作用;當S/d = 1.0時,其環間距相對較小,造成各環之預混火焰無法形成獨立環狀火焰,降低其火焰反應面積,且無法提供出口端附近未燃氣的預熱,對於火焰燃燒速率無法有效的提升,在污染物方面,雖然二氧化碳的生成量相對較低,但氮氧化物的生成量卻最高;在S/d = 1.67與2.33的條件下,由於環與環之間的距離增加,故皆能產生獨立環狀火焰結構,且火焰模態相當類似,在氮氧化物的排放量,其表現的性能也不相上下,原因為當環間距比增加到某一程度後,環間距比的改變效應迅速降低;不同的燃料當量比有不同之火焰初始強度與特性,亦影響火焰交互作用,當□□值為1.1時,火焰初始強度相對最強火焰溫度也最高,雖然氮氧化物的生成量略高,但評比各項數據後,其整體性能優於□□值為1.3與□□值為1.5。


    The objective of this study is to investigate the flame-interaction and to design a multi-ring combustor with optimal performance. The flame-interaction was controlled by varying gap ratio (S/d) and equivalence ratio (□). Their effects on the flame structure were investigated by numerical and experimental methods. The sudden expansion structure of multi-ring combustor generate the flame holding and preheating effect, these phenomena can provide combustor operate in the fuel lean condition. The optimal operation conditions are S/d = 1.67, the inner ring □ = 0.8, and the middle and the outer ring □ = 1.1, which is corresponded to the objective of high performance and low pollutant.
    The change of geometric dimension by varying S/d greatly affects the flame structure, where different degree of flame-interaction can be found. When S/d = 1.0, the flame merge together because the gap distance is short, and the separated ring-flame cannot be observed. This phenomenon will cause decrease reaction area and the preheating effect can not be provided to unburnt gas near the exit region of the combustor. Thus, the combustion rate can not be improved effectively. Considering the emission production, despite the production of carbon dioxide is lower, the production of nitric oxides(NOx) is the highest. When S/d = 1.67 and 2.33, a separated ring-flame can be found on each of the rings since the gap distance is wider. Similar flame pattern can also be found among ring-flames. Furthermore, their productions of NOx are nearly equal. This is because the effects of flame-interaction on flame structure rapidly decrease when the gap ratio increases beyond a specific value. The equivalence ratio dominates the initial flame strength and characteristic; consequently, it influences the flame-interaction. When □ = 1.1, the flame strength is the strongest and temperature is the highest. Although the production of NOx is slightly higher than that of □ = 1.3 and □ = 1.5, its global performance is the best.

    摘要 i Abstract ii 目 錄 iii 表目錄 vi 圖目錄 vii 符號說明 xiii 第一章 前言 1 第二章 文獻回顧 3 2-1 火焰型態 4 2-1-1 燃料種類 4 2-1-2 火焰燃燒模式 5 2-2幾何外型之影響 7 2-3 火焰結構 9 2-3-1污染物之研究 9 2-3-2 火焰交互作用 11 第三章 分析方法 16 3-1 數值模擬分析方法 17 3-1-1 主要控制參數 17 3-1-2物理模型 18 3-1-3模型假設 18 3-1-4氣相統御方程式 20 3-1-5收斂條件 21 3-1-6化學反應模式 21 3-1-7軟體簡介 姜正侯 22 3-1-8參數設定 22 3-1-9數值計算獨立性分析 23 3-2 實驗量測分析方法 30 3-2-1實驗設備與規格 31 3-3粒子顯像測速儀 (PIV) 原理簡介 38 第四章 結果與討論 40 4-1 火焰模態 41 4-1-1 環間距比之影響 42 4-1-2 燃料當量比之影響 44 4-2 火焰溫度 46 4-2-1 環間距比之影響 51 4-2-2 燃料當量比之影響 57 4-3 火焰長度 60 4-3-1 環間距比之影響 61 4-3-2 燃料當量比之影響 62 4-4 速度場 63 4-4-1 環間距比之影響 64 4-4-2 燃料當量比之影響 79 4-5 污染物 83 4-5-1一氧化碳 83 4-5-2 二氧化碳 87 4-5-3氮氧化物 91 4-6 最佳參數設計 100 4-6-1環間距比 100 4-6-2燃料當量比 101 第五章 結論與展望 104 5-1 結論 104 5-2展望 106 第六章 參考資料 107

    Bain, D. B., Smith, C. E., and Holdeman, J. D., 1994, “CFD Assessment of Orifice Aspect Ratio and Mass Flow Ratio on Jet Mixing in Rectangular Ducts,” AIAA Paper 94-0218.
    Bell, J. B., Cheng, R. K., Marcus. S. D., and Shepherd, I. G., 2007, “Nmerical Simulation of Lewis Number Effects on Lean Premixed Turbulent Flames,” Proceedings of the Combustion Institute, Vol. 31, pp. 1309-1317.
    Bennett, B. A. V., McEnally, C. S., Pfefferle, L. D., and Smooke, M. D., 2000, “Computational and Experimental Study of Axisymmetric Coflow Partially Premixed Methane/Air Flames,” Combustion and Flame, Vol. 123, pp. 522-546.
    Blevins, L. G. and Gore, J. P., 1999, “Computed Structure of Low Strain Rate Partially Premixed CH4/Air Counterflow Flames: implications for NO Formation,” Combustion and Flame, Vol. 116, pp. 546-566.
    Cheng, T. S., Chao, Y. C., Wu, D. C., Hsu, H. W., and Yuan, T., 2001, “Effects of Partial Premixing on Pollutant Emissions in Swirling Methane Jet Flames,” Combustion and Flame, Vol. 125, pp. 865-878.
    Chun, W. C. and Ishwar, K. P., 2001, ”Contribution of Curvature to Flame-Stretch Effects on Premixed Flames,” Combustion and Flame, Vol. 126, pp. 1640-1654
    Disimile, P. J., Savory, E., and Toy, N., 1995, “Mixing Characteristic of Twin Impinging Circular Jets,” Journal of Propulsion and Power, Vol. 11, No. 6, pp. 1118-1124.
    Domingo, P. and Vervisch, L., 1996, “Triple Flames and Partially Premixed Combustion in Autoignition of Non-premixed Turbulent Mixtures,” Twenty-sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 233-240.
    Fluent 6.0 User Guide, Fluent Inc., Centerra Resource Park, 10 Cavendish
    Court, Lebanon, NH 03766, 2003
    Gollahalli, S. R., Khanna, T., and Prabhu, N., 1992, “Diffusion Flames of Gas Jets Issued from Circular and Elliptic Nozzles,” Combustion Science and Technology, Vol. 86, pp. 267-288.
    Gollahalli, S. R. and Subba, S., 1997, “Partially Premixed Laminar Gas Flame From Triangular Burners,” Journal of Propulsion and Power, Vol. 13, No. 2, pp. 226-232.
    Guo, H., Liu, F., and Smallwood, G. J., 2005, “A Numerical Study on NOx Formation in Laminar Counterflow CH4/air Ttriple Flames,” Combustion and Flame, Vol. 143, pp. 282-298.
    Han, D. and Mungal, M. G., 2003, “Simultaneous Measurements of Velocity and CH Distribution. Part II: Deflected Jet Flames,” Combustion and Flame, Vol. 133, pp. 1-17.
    Jose, O. S., James, F. D., Charles, J. M., Jeffrey, M. D., and Campbell, D. C., 2003, “Propagation Speeds and Stretch Rates Measured along Wrinkled Flames to Assess the Theory of Flame Stretch,” Combustion and Flame, Vol. 133, pp 323-334.

    Kanury, A., 1975, Introduction to Combustion Phenomena, Gordon and Breach Science Publishers, New York, Chapter 7 & Chapter 8.
    Kuo, K. K., 1986, Principle of Combustion, John Wiely and Sons, New York, Chapter 5 & Chapter 6.
    Lee, T. W., Mitrovic, A., and Wang, T., 2000, “Temperature, Velocity, and NOx/CO Emission Measurements in Turbulent Flame of Partial Premixing with Central Fuel Injection,” Combustion and Flame, Vol. 121, pp. 378-385.
    Li, S. C. and Williams, F. A., 1999, “NOx Formation in Two-Stage Methane-Air Flames,” Combustion and Flame, Vol. 118, pp. 399-414.
    Mungekar, H. P. and Atreya, A., 2006, “Effect of Partial Premixing on the Sooting Structure of Methane Flames,” Combustion and Flame, Vol. 144, pp. 336-348.
    Nishioka, M., Ishigami, Y., Horii, H., Umeda Y., and Nakamura, Y., 2006, “NOx Reduction Mechanism of a Methane–Air Smithells Flame,” Combustion and Flame, Vol. 147, pp. 93-107.
    Naha, S. and Aggarwal, S. K., 2004, “Fuel Effects on NOx Emissions in Partially Premixed Flames,” Combustion and Flame, Vol. 139, pp. 90-105.
    Otsuka, T., Shinozaki, K., Toyoyama, K., and Ishihara, S., 1990, “Gas Burner,” United States patent No. 4,927,356.
    Seitzman, J. M., Paul, P. H., and Hanson, R. K., 1990, “Imaging and Characterization of OH Structures in a Turbulent Nonpremixed Flame,” Twenty-third Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 637-644.
    Sohn, C. H., Jeong, I. M., and Chung, S. H., 2002, “Numerical Study of the Effects of Pressure and Air-Dilution on Formation in Laminar Counterflow Diffusion Flames of Methane in High Temperature Air,” Combustion and Flame, Vol. 130, pp. 83-93.
    Su, A. and Liu, Y. C., 2002, “Investigation of Impinging Diffusion Flames with Inert Gas,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 3251-3257.
    Ting, D. S.-K. and Reader, G. T., 2005, “Hydrogen Peroxide for Improving Premixed Methane–Air Combustion,” Energy, Vol. 30, pp.313-322.
    Turn, S. R., 2000, An Introduction to Combustion, Concepts and Application, McGraw-Hill International Edition
    Xue, H. and Aggarwal, S. K., 2003, “NOx Emissions in n-Heptane/Air Partially Premixed Flames,” Combustion and Flame, Vol. 132, pp. 723-741.
    Yang, J. T. and Tsai, G. L., 1993, “Near Wake Flow of a V-Gutter with Slit Bleed,” ASME. J. Fluids Engineering, Vol. 115, pp. 13-20.
    Yang, J. T., Chang, C. C., and Pan, K. L., 2002a, “Flow Structure and Mixing Mechanisms behind a Disc Stabilizer with a Central Fuel Jet,” Combustion Science and Technology, Vol. 174(3), pp. 73-94.
    Yokomori, T. and Mizomoto, M., 2003, “Flame Temperatures along a Laminar Premixed Flame with a Non-Uniform Stretch Rate,” Combustion and Flame, Vol. 135, pp. 489-502.
    大塚哲二,1995,濃淡燃燒裝置,日本國特許廳公開特許公報,特開平7-253204。
    白井豐,守屋好文,原正一,1995,燃燒器裝置,日本國特許廳公開特許公報,特開平7-260108。
    姜正侯,1993,燃氣工程技術手冊,同濟大學出版社。
    陳福安,2000,高負荷燃燒器之火焰雷射診測與燃燒機制研究,國立清華大學動力機械工程學系碩士論文。
    陳昭安,2005,多環燃燒器之設計與燃燒機制研究,國立清華大學動力機械工程學系碩士論文。
    黃木丈俊、藤生昭,1995,燃燒裝置,日本國特許廳公開特許公報,特開平7-151319。
    楊鏡堂, 高智勇, 1999,對流衝擊型燃燒器,中華民國新型專利 第149086號 (專利權期間:1999/7/21~2010/6/28, 發證日期: 88/12/06; 國科會專題研究計畫編號:NSC-87-2212-E-007-034).
    蔣淑卿, 2002,複合進氣道燃燒器之火焰結構研究中,國立清華大學動力機械工程學系碩士論文。

    藍斌豪,2004,多向斜衝燃燒器之衝擊效應數值分析,國立清華大學動力機械工程學系碩士論文。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE