簡易檢索 / 詳目顯示

研究生: 蔡志偉
chih-wei Tsai
論文名稱: 低界電常數材料在積體電路上的應用研究
Study of SiCF-A Low Dielectric Constant Material for ULSI Application
指導教授: 周立人
L.J. Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 英文
論文頁數: 29
中文關鍵詞: 低界電常數材料
外文關鍵詞: low dielectric constant, SiCF
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著積體電路的進步元件的縮小RC延遲主導了元件的速度在此我們發展了一新低介電常數材料SiCF來符合未來的要求


    Abstract
    As the dimension of integrated circuit dimensions continue to shrink, interconnect RC delay became an increasingly serious problem. Fabrication of interconnect structures using new materials of low resistivity and low permitivity to replace the traditional Al and SiO2 interconnect technology is in high demand. Especially, copper and low dielectric constant (low-k) polymers show great promise. We has studied a new low dielectric constant material SiCF, which has a permitivity lower than that of silicon dioxide. The low-k material was deposited by PECVD (plasma enhanced chemical vapor deposition) using SiH4/CF4 gases in the chamber with parallel plate electrode of 13.56 MHz RF. It can offer a dielectric constant as low as 2.9 under optimal conditions. In this work, the effects of RF power, chamber pressure and various gas-mixing ratio (SiH4/CF4) were studied. By employing N2, and NH3 plasma post treatment, the ability of SiCF to expel copper penetration was improved significantly. In addition, the results showed that N2O plasma-treated SiCF films have lower leakage current and dielectric constant.

    Contents Acknowledge……………………………………………………………..I Abstract………………………………………………………………….II Table Captions…………………………………………………………..III Figure Captions…………………………………………………………IV Chapter 1. Introduction………………………………………………….1 1.1 General Background…………………………………………….1 1.2 The Requirements of Dielectric Constant Materials………….3 1.3 Deposition & Material Options…………………………………3 1.4 The Advantage of Plasma Enhanced Chemical Vapor Deposition………………………………………………………..5 1.5 Plasma Post-Treatment…………………………………………6 1.6 Integration Between Copper and Low-k………………………6 Chapter 2. Experimental Procedure…………………………………….8 2.1 Part 1- Intrinsic Properties of SiCF…………………………….8 2.1.1 Wafer Cleaning……………………………………………8 2.1.2 Film Deposition……………………………………………9 2.1.3 Measurement………………………………………………9 2.2 Part 2- Effects of Plasma Post Treatment on SiCF…………...10 2.2.1 Plasma Post-treatment…………………………………...10 2.2.2 Copper Deposition………………………………………..11 2.2.3 Measurement……………………………………………..12 Chapter 3.Results and Discussion……………………………….……..14 3.1 Part 1- Intrinsic Properties of SiCF…………………………...14 3.1.1 The Effect of SiH4 Flow Rate……………………….…...14 3.1.2 The Effect of RF Power………………………………….16 3.1.3 The Effect of Pressure……………………………………17 3.1.4 The Constituent Elements of SiCF……………………...18 3.2 Part 2-Effects of Plasma Treatment on Low Dielectric Constant Material (SiCF)………………………………………………..18 3.2.1 N2 Plasma Post-Treatment ……………………..……….18 A. Morphology…………...……………………..……….18 B. Electrical Properties…………………………………19 C. Copper Diffusion…………………………………….20 3.2.2 NH3 Plasma Post-Treatment…………………………….20 A. Morphology…………...……………………..……….20 B. Electrical Properties…………………………………21 C. Copper Diffusion…………………………………..…21 3.2.3 N2O Plasma Post-Treatment…………………………….22 A. Morphology…………...……………………..……….22 B. Electrical Properties…………………………………22 C. Copper Diffusion………………………………….…23 Chapter 4.Conclusions………………………………………………….24 4.1. The Intrinsic Properties of SiCF…………………………..24 4.2 Effect of Plasma Treatment on Low Dielectric Constant Material (SiCF)…………………………………………….25 References………………………………………………………………..27

    References
    1. Semiconductor Industry Association, National Technology Roadmap for Semiconductor, (1994).
    2. S. P. Muraka, Solid State Technol. 39, 83 (1996).
    3. L. Peters, Semiconductor International, Sep. 64, (1998).
    4. J. Ida , M. Yoshimaru, T. Usami, A. Ohtomo, K. Shimokawa, A. Kita, M. Ino, IEEE Symp. VLSI Technol. Digest, 54 (1994).
    5. T. Sakurai, IEEE Trans. Electron Devices, 40, 118 (1993).
    6. B. Roberts, A. Harrus, and R. L. Jackson, Solid State Technology, Feb. 69, (1995)
    7. H. Treichel, G. Ruhl, P. Ansmann, R. Wuller, M. Dietlmeier, and G. Maier, Proceedings of The First International Dielectrics for VLSI/ULSI Multilevel Interconnection Conference (DUMIC), 201, (IEEE, Santa Clara, CA. 1998).
    8. S.-Y. Oh. et al., SRC Topic Research Conference Workshop on Low Dielectric Interlayer Dielectrics for High Performance Circuits, RPI, Troy, NY, Aug. 9-10, (1994).
    9. T. S. Kuan, Dielectrics and CVD Metallization Symp., San Diego, CA, Feb. 7-8, (1994).
    10. T. E. Seidel, C. H. Ting, Material Research Society Symp. Proc. 381,.3, (1995).
    11. C. B. Case, C. J. Case, A. Kornblit, M. E. Mills, D. Castillo, R. Liu, Materials Research Society, 443, 177.
    12. Neil H. Hendricks, Materials Research Society, 443, 3 (1997).
    13. T. Homma and Y. Murao, Proc. VLSI Multilevel Interconnection Conference, 71, (1993).
    14. T. Homma, Y. Murao, and R. Yamagushi, J. Electrochem. Soc., 140, (1993).
    15. J. Ida, M. Yoshimaru, T. Usami, A. Ohtomo, K. Shimokawa, A. Kita, and M. Ino, Proc. IEEE Symp. on VLSI Technology, IEEE, New York, 59, (1994).
    16. IEEE International conference on Conduction and Breakdown in Solid Dielectrics, June 22-25, Vasteras, Sweden (1998).
    17. Special issue: Thin Solid Films 262, 1 (1995).
    18. M. T. Bohr, Solid State Technol. 39, 105 (1996).
    19. S. P. Murarka and S. W. Hymes, Crit. Rev. Solid State Mater. Sci. 20, 87 (1995).
    20. R. Haight, R. C. White, B. D. Silverman, and P. S. Ho, J. Vac. Sci. Technol. A 6, 2188 (1988).
    21. A. J. Pertsin and Y. M. Pashunin, Appl. Surf. Sci. 47, 115 (1991).
    22. R. H. Lancome, L. P. Buchwalter, and P. Holloway, J. Adhesion Sci Technol. 7, 1293(1993).
    23. M. K. Shi, B. Lamontagne, A. Selmani, L. Martinu, E. Sacher, M. R. Wertheimer, and A. Yelon, J. Vac. Sci. Technol. A.12, 29(1994).
    24. M. K. Shi, L. Martinu, E. Sacher, A. Selmani, M. R. Wertheimer, and A. Yelon, Surf. Interface Anal. 23,99 (1995).
    25. C. -A. Chang, Appl. Phys. Lett. 51, 1236 (1987).
    26. C. -A. Chang, J. E. E. Baglin, A. G. Schrott, and K. C. Lin, Appl. Phys. Lett. 51, 103 (1987).
    27. M. C. Burrell, G. M. Porta, B. R. Karas, D. F. Foust, and J. J. Chera, J. Vac. Sci. Technol. A 10, 2752 (1991).
    28. M. Chtaib, J. Ghijsen, J. J. Pireaux, R. Caudano, R. L. Johnson, E. Orti, and L. Bredas, Phys. Rev. B 44, 10 815 (1991).
    29. T. Homma, Y. Murao, and R. Yamagushi, J. Electrochem. Soc., 140, (1992).
    30. V. Shannon. M. Karim. Thin Solid Films 270 498 (1995).
    31. L. Martinu, A. Raveh, A. Domingue, L. Bertrand, J. E. Klemberg-Sapieha, S. C. Gujrathi, and M. R. Wertheimer, Thin Solid Films 208, 42 (1992).
    32. G. J. Vandentop, M. Kawasaki, R. M. Nix, I. G. Brown, M. Salmeron, and G. A. Somorjai, Phys. Rev. B 41, 3200 (1900).
    33. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 1994).
    34. K. P. Shamrai, V. F. Virko, H.-O. Blom, V. P. Pavlenko, V. B. Taranov, L. B. Jonsson. C. Hedlund, and S. Berg, J. Vac. Sci. Technol. A 15, 2864 (1997).
    35. S. Takeishi et al., ‘Plasma-Enhanced Chemical Vapor Deposition of Fluorocarbon Films with High Thermal Resistance and Low Dielectric Constant”’ J. Electrochem. Soc., 144, 1797-1802, (1997)
    36. S. Takeishi, H. Kudoh, R. Shinohara, A Tsukune, Y. Satoh, H. Miyazawa, H. Harada and M. Yamada, J. Electrochem. Soc., 143 381 (1996)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE