研究生: |
陳羽萱 Chen, Yu-Hsuan |
---|---|
論文名稱: |
基質金屬蛋白酶 1 在酸性胰臟腫瘤微環境中的功能性探討 Roles of Matrix Metalloproteinase 1 (MMP-1) in Acidic Pancreatic Tumor Microenvironment |
指導教授: |
張壯榮
Chang, Chuang-Rung 張文祥 Chang, Wun-Shiang |
口試委員: |
王翊青
Wang, I-Ching 林愷悌 Lin, Kai-Ti |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 79 |
中文關鍵詞: | 基質金屬蛋白酶 、MMP-1 、酸性腫瘤微環境 、細胞外酸鹼值 、pHe 、胰臟癌 |
外文關鍵詞: | matrix metalloproteinase, MMP-1, acidic tumor microenvironment, extracellular pH, pHe, pancreatic cancer |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
酸化微環境為許多實體腫瘤之共同特徵。在胰臟癌病患體內,其實體腫瘤內部血管灌注不足,導致腫瘤細胞所需之氧氣和養分供應缺乏。這些腫瘤細胞喜好優先使用糖解作用而不是氧化磷酸化的方式去產生能量,此現象稱為瓦式效應。然而,伴隨此瓦式作用,癌細胞會產生大量酸性代謝物質並迅速將之分泌至細胞外,終使胰臟腫瘤胞外酸鹼值 (extracellular pH, pHe) 逐漸失衡且變質變酸。藉由本論文的實驗研究,我發現當胰臟腫瘤處於外在環境變酸的壓力刺激下,癌細胞會大量上調「基質金屬蛋白酶-1 (MMP-1)」的表現量,且其增加之基因轉錄倍數,在人體所有二萬多筆基因數當中排名最高。進一步分析顯示,酸化環境誘導MMP-1的大量表現並被分泌至胞外,進而促使胰臟腫瘤細胞變得更加惡化且更具侵襲與轉移能力。這些研究發現除了點出MMP-1蛋白酶於酸性腫瘤微環境中的可能重要功能,亦提供了未來針對胰臟腫瘤的外在偏酸特性設計基質蛋白酶-1抑制劑的抗癌策略方針。
Acidic microenvironment is a hallmark of many solid tumors. In pancreatic cancer patients, their solid tumors are often provided with poor vascular perfusion which leads to the disrupted flow of oxygen and nutrients to the tumor mass. These tumor cells preferentially utilize glycolysis instead of oxidative phosphorylation, a phenomenon known as Warburg effect. However, due to exuberant secretion of acidic metabolites from Warburg metabolism, the extracellular pH (pHe) of pancreatic tumors generally becomes acidic per se. In this thesis, I present evidence showing that matrix metalloproteinase 1 (MMP-1) has the highest transcriptional fold increase of the whole transcriptome (more than 25,000 genes for human genome) upon tumor exposure to acidosis stress. The increased expression and subsequent secretion of MMP-1 induced by extracellular acidity was further identified to promote pancreatic tumor malignancy and aggressiveness. These findings not only highlight the important roles of MMP-1 under the acidic tumor microenvironment, but also suggest that future development of acidity-targeting MMP-1 inhibitor may provide a rational therapeutic approach to the treatment of pancreatic cancer.
1. Siegel Rebecca, L., Miller Kimberly, D., and Jemal, A. (2018) Cancer statistics, 2018. CA: A Cancer Journal for Clinicians 68, 7-30.
2. Zhang, L., Sanagapalli, S., and Stoita, A. (2018) Challenges in diagnosis of pancreatic cancer. World Journal of Gastroenterology 24, 2047-2060.
3. Martín, AM., Hidalgo M., Alvarez R., Arrazubi V., Martínez-Galán J., Salgado M., Macarulla T., and Carrato, A. (2018) From first line to sequential treatment in the management of metastatic pancreatic cancer. Journal of Cancer 9, 1978-1988.
4. Waterhouse, M. A., Burmeister, E. A., O’Connell, D. L., Ballard, E. L., Jordan, S. J., Merrett, N. D., Goldstein, D., Wyld, D., Janda, M., Beesley, V. L., Payne, M. E., Gooden, H. M., and Neale, R. E. (2016) Determinants of outcomes following resection for pancreatic cancer — a population-based study. Journal of Gastrointestinal Surgery 20, 1471-1481.
5. Gatenby, R. A., and Gillies, R. J. (2004) Why do cancers have high aerobic glycolysis? Nature Reviews Cancer 4, 891-889.
6. Böhme, I., and Bosserhoff Anja, K. (2016) Acidic tumor microenvironment in human melanoma. Pigment Cell & Melanoma Research 29, 508-523.
7. Zhang, X., Lin, Y., and Gillies, R. J. (2010) Tumor pH and its measurement. Journal of Nuclear Medicine 51, 1167-1170.
8. Grasso, C., Jansen, G., and Giovannetti, E. (2017) Drug resistance in pancreatic cancer: Impact of altered energy metabolism. Critical Reviews in Oncology Hematology 114, 139-152.
9. Corbet, C., and Feron, O. (2017) Tumour acidosis: from the passenger to the driver’s seat. Nature Reviews Cancer 17, 577-593.
10. Stöcker, W., Grams, F., Baumann, U., Reinemer, P., Gomis-Rüth, F. X., McKay, D. B., and Bode, W. (1995) The metzincins topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Science 4, 823-840.
11. Verma, R. P., and Hansch, C. (2007) Matrix metalloproteinases (MMPs): Chemical–biological functions and (Q)SARs. Bioorganic & Medicinal Chemistry 15, 2223-2268.
12. Nagase, H., Visse, R., and Murphy, G. (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Research 69, 562-573.
13. Murphy, G., and Nagase, H. (2011) Localising matrix metalloproteinase activities in the pericellular environment. The FEBS journal 278, 2-15.
14. Kessenbrock, K., Wang, C.-Y., and Werb, Z. (2015) Matrix metalloproteinases in stem cell regulation and cancer. Matrix Biology 0, 184-190.
15. Azevedo, A., Prado A. F., Antonio R. C., Issa J. P., and Gerlach R. F. (2014) Matrix metalloproteinases are involved in cardiovascular diseases. Basic & Clinical Pharmacology & Toxicology 115, 301-314.
16. Benjamin, M. M., and Khalil, R. A. (2012) Matrix metalloproteinase inhibitors as investigative tools in the pathogenesis and management of vascular disease. Experientia Supplementum Springer 103, 209-279.
17. Rundhaug Joyce, E. (2007) Matrix metalloproteinases and angiogenesis. Journal of Cellular and Molecular Medicine 9, 267-285.
18. Kato, Y., Ozawa, S., Tsukuda, M., Kubota, E., Miyazaki, K., St-Pierre, Y., and Hata, R. (2007) Acidc eztracellular pH increases calcium influx-triggered phospholipas D activity along with acidic aphingomyelinase activation to induce matrix metalloproteinase-9 expression in mouse metastatic melanoma. The FEBS Journal 274, 3171-3183.
19. Vandenbroucke, R. E., and Libert, C. (2014) Is there new hope for therapeutic matrix metalloproteinase inhibition? Nature Reviews Drug Discovery 13, 904.
20. Montagner, A. F., Sarkis-Onofre, R., Pereira-Cenci, T., and Cenci, M. S. (2014) MMP inhibitors on dentin stability: A systematic review and meta-analysis. Journal of Dental Research 93, 733-743.
21. Gross, J., and Lapiere, C. M. (1962) Collagenolytic activity in amphibian tissue culture assay. Proceedings of the National Academy of Sciences of the United States of America 48, 1014-1022.
22. Pendás, A. M., Santamarı́a, I., Alvarez, M. V., Pritchard, M., and López-Otı́n, C. (1996) Fine physical mapping of the human matrix metalloproteinase genes clustered on chromosome 11q22.3. Genomics 37, 266-269.
23. Wojtkowiak, J. W., Rothberg, J. M., Kumar, V., Schramm, K. J., Haller, E., Proemesey, J. B., Lloyd, M. C., Sloane, B. F., and Gillies, R. J. (2012) Chronic autophagy is a cellular adaption to tumor acidic Ph microenvironments. Cancer Research 72, 3938-3947.
24. Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., and Yoshimori, T. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO Journal 19, 5720-5728.
25. Hansen, T. E., and Johansen, T. (2011) Following autophagy step by step. BMC Biology 9, 39.
26. Machesky, L. M. (2008) Lamellipodia and filopodia in metastasis and invasion. FEBS Letters 582, 2102-2111.
27. Vasiljeva, O., Reinheckel, T., Peters, C., Turk, D., Turk, V., and Turk, B. (2007) Emerging roles of cyteine cathepsins in disease and their potential as drug targets. Current Pharmaceutical Design 13, 387-403.
28. Olson, O. C., and Joyce, J. A. (2015) Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nature Reviews Cacner 15, 712-729.
29. Vincenti, M. P., and Brinckerhoff, C. E. (2002) Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Research 4, 157-164.
30. Benbow, U., and Brinckerhoff, C. E. (1997) The AP-1 site and MMP gene regulation: What is all the fuss about? Matrix Biology 15, 519-526.
31. Nakayama, K. (2013) cAMP-response element-binding protein (CREB) and NF-κB transcription factors are activated during prolonged hypoxia and cooperatively regulate the induction of matrix metalloproteinase MMP1. The Journal of Biological Chemistry 288, 22584-22595.
32. Caamaño, J. H., Rizzo, C. A., Durham, S. K., Barton, D. S., Raventós-Suárez, C., Snapper, C. M., and Bravo, R. (1998) Nuclear factor (NF)-κB2 (p100/p52) is required for normal splenic microarchitecture and B cell–mediated immune responses. The Journal of Experimental Medicine 187, 185-196.
33. Sun, S. C. (2011) Non-canonical NF-κB signaling pathway. Cell Research 21, 71-85.
34. Liu, T., Zhang, L., Joo, D., and Sun, S. C. (2017) NF-κB signaling in inflammation. Signal Transduction And Targeted Therapy 2, 17023.
35. Sasaki, C. T., Toman, J., and Vageli, D. (2016) The in vitro effect of acidic-pepsin on nuclear factor kappaB activation and its related oncogenic effect on normal human hypopharyngeal Cells. PLoS ONE 11, e0168269.
36. Gerry, A. B., and Leake, D. S. (2014) Effect of low extracellular pH on NF-κB activation in macrophages. Atherosclerosis 233, 537-544.
37. Herrera, I., Cisneros, J., Maldonado, M., Ramírez, R., Ortiz-Quintero, B., Anso, E., Chandel, N. S., Selman, M., and Pardo, A. (2013) Matrix metalloproteinase (MMP)-1 induces lung alveolar epithelial cell migration and proliferation, protects from apoptosis, and represses mitochondrial oxygen consumption. The Journal of Biological Chemistry 288, 25964-25975.
38. Newby, A. C. (2006) Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovascular Research 69, 614-624.
39. He, X., Dai, J., Fan, Y., Zhang, C., and Zhao, X. (2017) Regulation function of MMP-1 downregulated by siRNA on migration of heat-denatured dermal fibroblasts. Bioengineered 8, 686-692.
40. Jo, Y. K., Park, S. J., Shin, J. H., Kim, Y., Hwang, J. J., Cho, D.-H., and Kim, J. C. (2011) ARP101, a selective MMP-2 inhibitor, induces autophagy-associated cell death in cancer cells. Biochemical and Biophysical Research Communications 404, 1039-1043.
41. Desai, Salil P., Bhatia, Sangeeta N., Toner, M., and Irimia, D. (2013) Mitochondrial localization and the persistent migration of epithelial cancer cells. Biophysical Journal 104, 2077-2088.
42. Jung, J.-U., Ravi, S., Lee, D. W., McFadden, K., Kamradt, M. L., Toussaint, L. G., and Sitcheran, R. (2016) NIK/MAP3K14 regulates mitochondrial dynamics and trafficking to promote cell invasion. Current Biology 26, 3288-3302.
43. Canino, M. C., and Altieri, D. C. (2015) Cancer cells expolit adaptive mitochobdrial dynamics to increase tumor cell invasion. Cell Cycle 14, 3242-3247.
44. Gioia, M., Fasciglione, G. F., Monaco, S., Iundusi, R., Sbardella, D., Marini, S., Tarantino, U., and Coletta, M. (2010) pH dependence of the enzymatic processing of collagen I by MMP-1 (fibroblast collagenase), MMP-2 (gelatinase A),and MMP-14 ectodomain. Journal of Biological Inorganic Chemistry 8, 1219-1232.