簡易檢索 / 詳目顯示

研究生: 黃彥鈞
Huang, Yen Chun
論文名稱: 氧化鎳奈米線的合成與特性應用之研究
The synthesis, characteristics and applications of NiO-based nanowires
指導教授: 賴志煌
口試委員: 賴志煌
曾俊元
林秀豪
林昭吟
金重勳
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 135
中文關鍵詞: 氧化鎳奈米線陽極氧化鋁鐵磁反鐵磁交互耦合阻值轉換電阻式記憶體
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,奈米技術研發以及材料的開發逐漸在高科技產業中成為不可或缺的一部分。由於奈米線的形狀特性,並且可結合不同的元素而得到有別於塊材的獨特性質。如此多變的物理特性使得奈米線的應用研究變得廣泛而多樣化。本篇論文主要在研究不同結構的氧化鎳奈米線和其特性應用,當中包括探討核殼結構中鐵磁層(鎳)和反鐵磁層(氧化鎳)之間磁交互耦合力和形狀異向性如何相互影響造成磁矩結構改變以及多層膜式鉑-氧化鎳奈米線在電阻式記憶體上的應用。
     首先我們探討一維核殼奈米結構中鐵磁-反鐵磁的界面耦合現象,觀察核殼奈米線中鐵磁層(鎳)和反鐵磁層(氧化鎳)之間磁交互耦合力和形狀異向性如何相互影響造成磁矩結構改變。鎳奈米線由於形狀異向性的影響,其易軸會平行於長軸方向。然而,我們發現在核殼奈米線中會產生額外的水平異向性和形狀異向性相互競爭造成易軸的轉向。此一水平異向性的來源可能是由於鎳以及氧化鎳界面的磁交互耦合力造成界面上鐵磁磁矩的重排。利用微磁學模擬所得到的結果,我們發現當改變奈米線的粗細度,可以改變兩種異向性的競爭情況,而讓奈米線的磁矩結構產生渦漩性、螺旋性以及同調性逕而影響到磁阻的改變。
    另一方面,在電性上探討多層膜式鉑-氧化鎳奈米線在電阻式記憶體上的應用。藉由鉑插入層,可以改變氧化鎳電阻式記憶體元件的長度,而達到縮小操作電壓,改善電壓分布的情形。此外,我們利用施加脈衝電壓的方式,得到多重阻態的結果。從實驗結果推測其傳導機制主要為電洞跳躍傳導。氧化鎳的電動傳導特性主要是因為鎳原子和氧原子之間呈現非化學計量比的現象。因此當我們施加電壓於氧化鎳中,氧離子會重新分布使得電洞濃度的改變,造成多重電阻態變化。
    本論文藉由改變奈米線結構,討論奈米線元件的應用可能性。在磁性應用方面可藉由調變磁性交互耦合力控制磁矩結構;在電性應用方面,除了奈米線元件展現出優異的阻值轉換特性外,還能幫助了解阻值轉換背後的傳導機制。相信此研究結果將有助於奈米元件的應用與發展。


    Recently, nanotechnology plays an important role in lots of high-technical industries. Nanowires possess degrees of freedom associated with their intrinsic shape effect and their ability of incorporation with different components leading to unique properties different from those of bulk materials. The diverse range of applications has resulted in interest in nanowires with a wide range of physical properties. This dissertation focuses on the applications of NiO-based nanowires with different properties including interfacial coupling between ferromagnets and antiferromagnets in Ni/NiO core/shell nanowires and resistive switching characteristics of NiO/Pt multilayered nanowires.
    Ni/NiO core/shell nanowire arrays composed of a ferromagnetic Ni core and an antiferromagnetic NiO shell were fabricated to investigate the interfacial coupling 1D system. The magnetic behaviors of nanowire arrays are studied by varying the diameter of nanowires ranging from 30 to 100nm. Unusual anisotropy changes were observed in Ni/NiO core/shell nanowires which can be ascribed to the competition between shape anisotropy and exchange anisotropy. The OOMMF simulated results depict the modulated spin structures in NiO/Ni nanowires adjusting the magnitude of both shape anisotropy and in-plane exchange anisotropy by varying thickness ratio of shell and core.
    The resistive switching characteristics are also discussed in NiO/Pt multilayered nanowires, which can be considered as millions of NiO-based cells collected together. Non-polar resistive switching prevails reproducibly in millions of cells with significantly reduced switching voltages, narrow distributions in switching voltages, and a robust multilevel memory effect. A high resistance ratio (~105) between high and low resistance states in nano-scale cells enables stable multilevels induced easily by a pulsed voltage of various numbers.
    This dissertation provides possibilities of the applications with nanowire-based devices. For the magnetic application, the spin structures can be modulated by controlling the exchange anisotropy between ferromagnetism and antiferromagnetism. In addition, we demonstrate that nanowire-based devices not only have good performance of resistive switching but also help to clarify the conduction mechanism. Our findings are important for the development of nanowire-based device.

    Abstract I 中 文 摘 要 II 誌 謝 III Table of Contents IV Figure List VII Chapter 1 Introduction 1 1.1 Motivation 2 1.2 Outline of the dissertation 3 Chapter 2 Background 5 2.1 Introduction of anodic aluminum oxide (AAO) 5 2.1.1 Formation mechanism 6 2.1.2 Ordered self-organized AAO 10 2.1.3 Fabrication of nanostructures by AAO template 17 2.2 Exchange bias 23 2.2.1 Magnetic anisotropy 23 2.2.2 Theoretical models for exchange anisotropy 27 2.2.3 Exchange bias in core/shell nanostructures 35 2.3 Resistive switching phenomena 37 2.3.1 Basic principle and observation 37 2.3.2 Proposed conducting mechanism 41 2.3.3 Resistive switching in nanowire-based devices 51 Chapter 3 Experimental techniques and analyzing instruments 58 3.1 Sample fabrication 58 3.1.1 Electrochemical system and chemical reagents 58 3.2 Structural characterization 59 3.2.1 X-ray diffractometer (XRD) 59 3.2.2 Scanning electron microscope (SEM) 60 3.2.3 Transmission electron microscope (TEM) 61 3.3 Magnetic and electrical characterization 62 3.3.1 Vibrating sample magnetometer (VSM) 62 3.3.2 Resistive switching measurement system 63 Chapter 4 Synthesis and structure analysis of AAO and NiO-based nanowires 64 4.1 Purpose 64 4.2 Experiments 64 4.2.1 AAO fabrication 64 4.2.2 Fabrication of NiO-based nanowires 65 4.3 Results and discussion 67 4.3.1 Controlling pore size and microstructure of AAO 67 4.3.2 Structure analysis of NiO-based nanowires 70 4.4 Summary 74 Chapter 5 Exchange bias and spin reorientation of core/shell magnetic nanowires 75 5.1 Purpose 75 5.2 Results and discussions 76 5.2.1 Exchange bias of Ni/NiO nanowires 76 5.2.2 Spin reorientation of Ni/NiO nanowires 80 5.2.3 Micromagnetic simulations (OOMMF) 83 5.3 Summary 90 Chapter 6 Investigation of resistive switching memory effect in NiO-based nanowires 92 6.1 Purpose 92 6.2 Experiments 93 6.3 Results and discussion 94 6.4 Summary 107 Chapter 7 Conclusion and Suggestion for future work 109 7.1 Conclusion 109 7.1.1 AAO and NiO-based nanowires 109 7.1.2 Exchange bias and spin reorientation in core/shell nanowires 109 7.1.3 Resistive switching in NiO-based nanowires 110 7.2 Suggestion for future work 111 Appendix Fabrication of FePt networks and its applications 113 A.1 Fabrication and structural analysis of FePt networks 114 A.2 Magnetic properties of FePt networks 117 A.3 Summary 120 Reference 121

    1 B. Lee and H. S. P. Wong, IEEE Trans. Electron Devices 58 (10), 3270-3275 (2011).
    2 M. J. Lee, S. E. Ahn, C. B. Lee, C. J. Kim, S. Jeon, U. I. Chung, I. K. Yoo, G. S. Park, S. Han, I. R. Hwang and B. H. Park, ACS Appl. Mater. Interfaces 3 (11), 4475-4479 (2011).
    3 S. H. Jo, K. H. Kim and W. Lu, Nano Lett. 9 (1), 496-500 (2009).
    4 S.-E. Ahn, M.-J. Lee, Y. Park, B. S. Kang, C. B. Lee, K. H. Kim, S. Seo, D.-S. Suh, D.-C. Kim, J. Hur, W. Xianyu, G. Stefanovich, H. Yin, I.-K. Yoo, J.-H. Lee, J.-B. Park, I.-G. Baek and B. H. Park, Adv. Mater. 20 (5), 924-928 (2008).
    5 G. E. Possin, Rev. Sci. Instrum. 41, 772-774 (1970).
    6 G. E. Possin, Physica E 55, 339-343 (1971).
    7 F. Liu, J. Y. Lee and W. J. Zhou, Adv. Funct. Mater. 15 (9), 1459-1464 (2005).
    8 L. Li, Y. W. Yang, G. H. Li and L. D. Zhang, Small 2 (4), 548-553 (2006).
    9 J. B. Yi, H. Pan, J. Y. Lin, J. Ding, Y. P. Feng, S. Thongmee, T. Liu, H. Gong and L. Wang, Adv. Mater. 20 (6), 1170-+ (2008).
    10 S. Matefi-Tempfli and M. Matefi-Tempfli, Adv. Mater. 21 (40), 4005-+ (2009).
    11 F. S. Li and L. Y. Ren, Phys. Status Solidi A-Appl. Res. 193 (1), 196-201 (2002).
    12 L. Piraux, K. Renard, R. Guillemet, S. Matafi-Tempfli, M. Matefi-Tempfli, V. A. Antohe, S. Fusil, K. Bouzehouane and V. Cros, Nano Lett. 7 (9), 2563-2567 (2007).
    13 N. Lupu, H. Chiriac and P. Pascariu, J. Appl. Phys. 103 (7) (2008).
    14 J. P. O'sulliva and G. C. Wood, Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 317 (1531), 511-543 (1970).
    15 K. Nagashima, T. Yanagida, K. Oka, M. Taniguchi, T. Kawai, J. S. Kim and B. H. Park, Nano Lett. 10 (4), 1359-1363 (2010).
    16 S. Setoh and A. Miyata, Sci. Pap. Inst. Phys. Chem. Res. (Jpn.) 17 (1932).
    17 H. Masuda and K. Fukuda, Science 268 (5216), 1466-1468 (1995).
    18 O. Jessensky, F. Muller and U. Gosele, Appl. Phys. Lett. 72 (10), 1173-1175 (1998).
    19 H. Masuda, F. Hasegwa and S. Ono, Journal of The Electrochemical Society 144 (5), L127-L130 (1997).
    20 Y. Lei, W. P. Cai and G. Wilde, Prog. Mater. Sci. 52 (4), 465-539 (2007).
    21 V. P. Parkhutik and V. I. Shershulsky, J. Phys. D-Appl. Phys. 25 (8), 1258-1263 (1992).
    22 F. Y. Li, L. Zhang and R. M. Metzger, Chem. Mat. 10 (9), 2470-2480 (1998).
    23 A. P. Li, F. Muller, A. Birner, K. Nielsch and U. Gosele, J. Appl. Phys. 84 (11), 6023-6026 (1998).
    24 H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao and T. Tamamura, Appl. Phys. Lett. 71 (19), 2770-2772 (1997).
    25 S. Bandyopadhyay, A. E. Miller, H. C. Chang, G. Banerjee, V. Yuzhakov, D. F. Yue, R. E. Ricker, S. Jones, J. A. Eastman, E. Baugher and M. Chandrasekhar, Nanotechnology 7 (4), 360-371 (1996).
    26 H. Chik and J. M. Xu, Mater. Sci. Eng. R-Rep. 43 (4), 103-138 (2004).
    27 H. Masuda, Y. Matsui, M. Yotsuya, F. Matsumoto and K. Nishio, Chem. Lett. 33 (5), 584-585 (2004).
    28 Y. Matsui, K. Nishio and H. Masuda, Small 2 (4), 522-525 (2006).
    29 I. Mikulskas, S. Juodkazis, R. Tomasiunas and J. G. Dumas, Adv. Mater. 13 (20), 1574-1577 (2001).
    30 H. Masuda, K. Kanezawa and K. Nishio, Chem. Lett. (12), 1218-1219 (2002).
    31 S. Z. Chu, K. Wada, S. Inoue, M. Isogai and A. Yasumori, Adv. Mater. 17, 2115-2119 (2005).
    32 W. Lee, R. Ji, U. Gosele and K. Nielsch, Nature Materials 5 (9), 741-747 (2006).
    33 M. A. Kashi, A. Ramazani, M. Noormohammadi, M. Zarei and P. Marashi, J. Phys. D-Appl. Phys. 40 (22), 7032-7040 (2007).
    34 K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch and U. Gosele, ACS Nano 2 (2), 302-310 (2008).
    35 J. G. Zhu and Y. H. Tang, J. Appl. Phys. 99 (8), 08Q903 (2006).
    36 D. Suess, J. Fidler, K. Porath, T. Schrefl and D. Weller, J. Appl. Phys. 99 (8), 08G905 (2006).
    37 M. T. Rahman, C. H. Lai, D. Vokoun and N. N. Shams, IEEE Trans. Magn. 43 (6), 2133-2135 (2007).
    38 M. T. Rahman, N. N. Shams, Y. C. Wu, C. H. Lai and D. Suess, Appl. Phys. Lett. 91 (13), 132505 (2007).
    39 M. T. Rahman, N. N. Shams and C. H. Lai, Nanotechnology 19 (32), 325302 (2008).
    40 M. T. Rahman, R. K. Dumas, N. Eibagi, N. N. Shams, Y. C. Wu, K. Liu and C. H. Lai, Appl. Phys. Lett. 94 (4), 042507 (2009).
    41 E. Kondorski, SOWJET PHYS 11, 597 (1937).
    42 E. C. Stoner and E. P. Wohlfarth, Philosophical Transactions of the Royal Society of London Series a-Mathematical and Physical Sciences 240 (826), 599-642 (1948).
    43 R. Dittrich, I. Schrefl, H. Forster, D. Suess, W. Scholz, J. Fidler and V. Tsiantos, IEEE Trans. Magn. 38 (5), 1967-1969 (2002).
    44 K. Liu, J. Nogues, C. Leighton, H. Masuda, K. Nishio, I. V. Roshchin and I. K. Schuller, Appl. Phys. Lett. 81 (23), 4434-4436 (2002).
    45 C. Kim, T. Loedding, S. Jang and H. Zeng, Appl. Phys. Lett. 91 (17), 172508 (2007).
    46 L. Sun, Y. Hao, C. L. Chien and P. C. Searson, IBM J. Res. Dev. 49 (1), 79-102 (2005).
    47 T. M. Whitney, J. S. Jiang, P. C. Searson and C. L. Chien, Science 261 (5126), 1316-1319 (1993).
    48 R. Ferre, K. Ounadjela, J. M. George, L. Piraux and S. Dubois, Phys. Rev. B 56 (21), 14066-14075 (1997).
    49 K. Nielsch, R. B. Wehrspohn, J. Barthel, J. Kirschner, U. Gosele, S. F. Fischer and H. Kronmuller, Appl. Phys. Lett. 79 (9), 1360-1362 (2001).
    50 D. J. Sellmyer, M. Zheng and R. Skomski, J. Phys.-Condes. Matter 13 (25), R433-R460 (2001).
    51 A. J. Yin, J. Li, W. Jian, A. J. Bennett and J. M. Xu, Appl. Phys. Lett. 79 (7), 1039-1041 (2001).
    52 S. Z. Chu, K. Wada, S. Inoue, S. Todoroki, Y. K. Takahashi and K. Hono, Chem. Mat. 14 (11), 4595-4602 (2002).
    53 M. Kroll, W. J. Blau, D. Grandjean, R. E. Benfield, F. Luis, P. M. Paulus and L. J. de Jongh, J. Magn. Magn. Mater. 249 (1-2), 241-245 (2002).
    54 N. Grobert, W. K. Hsu, Y. Q. Zhu, J. P. Hare, H. W. Kroto, D. R. M. Walton, M. Terrones, H. Terrones, P. Redlich, M. Ruhle, R. Escudero and F. Morales, Appl. Phys. Lett. 75 (21), 3363-3365 (1999).
    55 R. M. Metzger, V. V. Konovalov, M. Sun, T. Xu, G. Zangari, B. Xu, M. Benakli and W. D. Doyle, IEEE Trans. Magn. 36 (1), 30-35 (2000).
    56 S. G. Yang, H. Zhu, D. L. Yu, Z. Q. Jin, S. L. Tang and Y. W. Du, J. Magn. Magn. Mater. 222 (1-2), 97-100 (2000).
    57 J. M. Garcia, A. Asenjo, J. Velazquez, D. Garcia, M. Vazquez, P. Aranda and E. Ruiz-Hitzky, J. Appl. Phys. 85 (8), 5480-5482 (1999).
    58 J. Qin, J. Nogues, M. Mikhaylova, A. Roig, J. S. Munoz and M. Muhammed, Chem. Mat. 17 (7), 1829-1834 (2005).
    59 T. R. Gao, L. F. Yin, C. S. Tian, M. Lu, H. Sang and S. M. Zhou, J. Magn. Magn. Mater. 300 (2), 471-478 (2006).
    60 C. L. Xu, H. Li, T. Xue and H. L. Li, Scr. Mater. 54 (9), 1605-1609 (2006).
    61 L. Cagnon, Y. Dahmane, J. Voiron, S. Pairis, M. Bacia, L. Ortega, N. Benbrahim and A. Kadri, J. Magn. Magn. Mater. 310 (2), 2428-2430 (2007).
    62 F. S. Li, D. Zhou, T. Wang, Y. Wang, L. J. Song and C. T. Xu, J. Appl. Phys. 101 (1), 014309 (2007).
    63 L. F. Liu, W. Y. Zhou, S. S. Xie, L. Song, S. D. Luo, D. F. Liu, J. Shen, Z. X. Zhang, Y. J. Xiang, W. J. Ma, Y. Ren, C. Y. Wang and G. Wang, J. Phys. Chem. C 112 (7), 2256-2261 (2008).
    64 H. M. Chen, C. F. Hsin, P. Y. Chen, R. S. Liu, S. F. Hu, C. Y. Huang, J. F. Lee and L. Y. Jang, J. Am. Chem. Soc. 131 (43), 15794-15801 (2009).
    65 J. H. Gao, Q. F. Zhan, W. He, D. L. Sun and Z. H. Cheng, Appl. Phys. Lett. 86 (23), 232506 (2005).
    66 S. Ichihara, M. Ueda and T. Den, IEEE Trans. Magn. 41 (10), 3349-3351 (2005).
    67 Y. C. Sui, W. Liu, L. P. Yue, X. Z. Li, J. Zhou, R. Skomski and D. J. Sellmyer, J. Appl. Phys. 97 (10), 10J304 (2005).
    68 C. Wang, Y. L. Hou, J. M. Kim and S. H. Sun, Angew. Chem.-Int. Edit. 46 (33), 6333-6335 (2007).
    69 H. X. Wang, E. G. Jia, L. D. Zhang, L. X. Li and M. Li, Phys. Lett. A 372 (35), 5712-5715 (2008).
    70 V. Haehnel, S. Fahler, L. Schultz and H. Schlorb, Electrochem. Commun. 12 (8), 1116-1119 (2010).
    71 G. B. Ji, J. M. Cao, F. Zhang, G. Y. Xu, H. L. Su, S. L. Tang, B. X. Gu and Y. W. Du, J. Phys. Chem. B 109 (36), 17100-17106 (2005).
    72 S. Aravamudhan, J. Singleton, P. A. Goddard and S. Bhansali, J. Phys. D-Appl. Phys. 42 (11), 115008 (2009).
    73 S. Shamaila, D. P. Liu, R. Sharif, J. Y. Chen, H. R. Liu and X. F. Han, Appl. Phys. Lett. 94 (20), 203101 (2009).
    74 Y. G. Guo, L. J. Wan, C. F. Zhu, D. L. Yang, D. M. Chen and C. L. Bai, Chem. Mat. 15 (3), 664-667 (2003).
    75 H. P. Liang, Y. G. Guo, J. S. Hu, C. F. Zhu, L. J. Wan and C. L. Bai, Inorg. Chem. 44 (9), 3013-3015 (2005).
    76 R. S. Liu, S. C. Chang, S. F. Hu and C. Y. Huang, Physica Status Solidi C - Current Topics in Solid State Physics, Vol 3, No 5, 1339-1342 (2006).
    77 F. Beron, L. P. Carignan, D. Menard and A. Yelon, IEEE Trans. Magn. 44 (11), 2745-2748 (2008).
    78 H. X. Wang, Y. C. Wu, L. D. Zhang and X. Y. Hu, Appl. Phys. Lett. 89 (23), 232508 (2006).
    79 K. R. Pirota and M. Vazquez, Adv. Eng. Mater. 7 (12), 1111-1113 (2005).
    80 J. Wong, P. Greene, R. K. Dumas and K. Liu, Appl. Phys. Lett. 94 (3), 032504 (2009).
    81 W. H. Meiklejohn and C. P. Bean, Physical Review 102 (5), 1413-1414 (1956).
    82 W. H. Meiklejohn and C. P. Bean, Physical Review 105 (3), 904-913 (1957).
    83 F. Radu and H. Zabel, Springer Tracts in Modern Physics 227, 97-184 (2008).
    84 A. P. Malozemoff, Phys. Rev. B 35 (7), 3679-3682 (1987).
    85 D. Mauri, H. C. Siegmann, P. S. Bagus and E. Kay, J. Appl. Phys. 62 (7), 3047-3049 (1987).
    86 N. C. Koon, Phys. Rev. Lett. 78 (25), 4865-4868 (1997).
    87 T. C. Schulthess and W. H. Butler, Phys. Rev. Lett. 81 (20), 4516-4519 (1998).
    88 T. C. Schulthess and W. H. Butler, J. Appl. Phys. 85 (8), 5510-5515 (1999).
    89 U. Nowak, A. Misra and K. D. Usadel, J. Appl. Phys. 89 (11), 7269-7271 (2001).
    90 U. Nowak, K. D. Usadel, J. Keller, P. Miltenyi, B. Beschoten and G. Guntherodt, Phys. Rev. B 66 (1), 014430 (2002).
    91 M. Fraune, U. Rudiger, G. Guntherodt, S. Cardoso and P. Freitas, Appl. Phys. Lett. 77 (23), 3815-3817 (2000).
    92 Y. T. Shen, Y. H. Wu, H. Xie, K. B. Li, J. J. Qiu and Z. B. Guo, J. Appl. Phys. 91 (10), 8001-8003 (2002).
    93 M. K. Husain, A. O. Adeyeye, C. C. Wang, V. Ng and T. S. Low, J. Magn. Magn. Mater. 267 (2), 191-196 (2003).
    94 J. Sort, B. Dieny, M. Fraune, C. Koenig, F. Lunnebach, B. Beschoten and G. Guntherodt, Appl. Phys. Lett. 84 (18), 3696-3698 (2004).
    95 V. Baltz, J. Sort, S. Landis, B. Rodmacq and B. Dieny, Phys. Rev. Lett. 94 (11), 117201 (2005).
    96 C. J. Jiang, D. S. Xue, X. L. Fan, D. W. Guo and Q. F. Liu, Nanotechnology 18 (33) (2007).
    97 T. Seto, H. Akinaga, F. Takano, K. Koga, T. Orii and M. Hirasawa, J. Phys. Chem. B 109 (28), 13403-13405 (2005).
    98 J. B. Tracy, D. N. Weiss, D. P. Dinega and M. G. Bawendi, Phys. Rev. B 72 (6), 064404 (2005).
    99 C. H. Ho and C. H. Lai, IEEE Trans. Magn. 42 (10), 3069-3071 (2006).
    100 E. L. Salabas, A. Rumplecker, F. Kleitz, F. Radu and F. Schuth, Nano Lett. 6 (12), 2977-2981 (2006).
    101 G. Salazar-Alvarez, J. Sort, S. Surinach, M. D. Baro and J. Nogues, J. Am. Chem. Soc. 129 (29), 9102-9108 (2007).
    102 P. Z. Si, D. Li, C. J. Choi, Y. B. Li, D. Y. Geng and Z. D. Zhang, Solid State Commun. 142 (12), 723-726 (2007).
    103 M. J. Benitez, O. Petracic, E. L. Salabas, F. Radu, H. Tuysuz, F. Schuth and H. Zabel, Phys. Rev. Lett. 101 (9), 097206 (2008).
    104 A. E. Berkowitz, G. F. Rodriguez, J. I. Hong, K. An, T. Hyeon, N. Agarwal, D. J. Smith and E. E. Fullerton, Phys. Rev. B 77 (2), 024403 (2008).
    105 D. W. Kavich, J. H. Dickerson, S. V. Mahajan, S. A. Hasan and J. H. Park, Phys. Rev. B 78 (17), 174414 (2008).
    106 A. Querejeta-Fernandez, M. Parras, A. Varela, F. del Monte, M. Garcia-Hernandez and J. M. Gonzalez-Calbet, Chem. Mat. 22 (24), 6529-6541 (2010).
    107 G. H. Wen, R. K. Zheng, K. K. Fung and X. X. Zhang, J. Magn. Magn. Mater. 270 (3), 407-412 (2004).
    108 A. N. Dobrynin, D. N. Ievlev, K. Temst, P. Lievens, J. Margueritat, J. Gonzalo, C. N. Afonso, S. Q. Zhou, A. Vantomme, E. Piscopiello and G. Van Tendeloo, Appl. Phys. Lett. 87 (1), 012501 (2005).
    109 V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord and J. Nogues, Nature 423 (6942), 850-853 (2003).
    110 T. W. Hickmott, J. Appl. Phys. 33 (9), 2669-2682 (1962).
    111 J. F. Gibbons and W. E. Beadle, Solid-State Electronics 7 (11), 785-797 (1964).
    112 W. R. Hiatt and T. W. Hickmott, Appl. Phys. Lett. 6 (6), 106-108 (1965).
    113 R. W. Brander, D. R. Lamb and P. C. Rundle, British Journal of Applied Physics 18 (1), 23-27 (1967).
    114 F. Argall, Solid-State Electronics 11 (5), 535-541 (1968).
    115 Dearnale.G, A. M. Stoneham and D. V. Morgan, Rep. Prog. Phys. 33 (11), 1129-1191 (1970).
    116 H. Biederman, Vacuum 26 (12), 513-523 (1976).
    117 H. Pagnia and N. Sotnik, Phys. Status Solidi A-Appl. Res. 108 (1), 11-65 (1988).
    118 A. Asamitsu, Y. Tomioka, H. Kuwahara and Y. Tokura, Nature 388 (6637), 50-52 (1997).
    119 W. W. Zhuang, W. Pan, B. D. Ulrich, J. J. Lee, L. Stecker, A. Burmaster, D. R. Evans, S. T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, K. Sakiyama, Y. Wang, S. Q. Liu, N. J. Wu, A. Ignatiev and I. Electronic Devices Society Of, Novell Colossal Magnetoresistive thin film nonvolatile resistance random access memory (RRAM). (Ieee, New York, 2002).
    120 I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo, U. I. Chung and J. T. Moon, Technical Digest - International Electron Devices Meeting, 587-590 (2004).
    121 M. J. Lee, Y. Park, D. S. Suh, E. H. Lee, S. Seo, D. C. Kim, R. Jung, B. S. Kang, S. E. Ahn, C. B. Lee, D. H. Seo, Y. K. Cha, I. K. Yoo, J. S. Kim and B. H. Park, Adv. Mater. 19 (22), 3919-3923 (2007).
    122 G. S. Park, X. S. Li, D. C. Kim, R. J. Jung, M. J. Lee and S. Seo, Appl. Phys. Lett. 91 (22), 222103 (2007).
    123 S. I. Kim, J. H. Lee, Y. W. Chang, S. S. Hwang and K. H. Yoo, Appl. Phys. Lett. 93 (3), 033503 (2008).
    124 M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S. E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I. K. Yoo, D. H. Seo, X. S. Li, J. B. Park, J. H. Lee and Y. Park, Nano Lett. 9 (4), 1476-1481 (2009).
    125 U. Russo, D. Ielmini, C. Cagli and A. L. Lacaita, IEEE Trans. Electron Devices 56 (2), 186-192 (2009).
    126 K. Oka, T. Yanagida, K. Nagashima, H. Tanaka and T. Kawai, J. Am. Chem. Soc. 131 (10), 3434-3435 (2009).
    127 K. Oka, T. Yanagida, K. Nagashima, T. Kawai, J. S. Kim and B. H. Park, J. Am. Chem. Soc. 132 (19), 6634-6635 (2010).
    128 I. Hwang, M. J. Lee, G. H. Buh, J. Bae, J. Choi, J. S. Kim, S. Hong, Y. S. Kim, I. S. Byun, S. W. Lee, S. E. Ahn, B. S. Kang, S. O. Kang and B. H. Park, Appl. Phys. Lett. 97 (5), 052106 (2010).
    129 J. Y. Son, Y. H. Shin, H. Kim and H. M. Jang, ACS Nano 4 (5), 2655-2658 (2010).
    130 C. Cagli, F. Nardi, B. Harteneck, Z. K. Tan, Y. G. Zhang and D. Ielmini, Small 7 (20), 2899-2905 (2011).
    131 W. H. Guan, S. B. Long, Q. Liu, M. Liu and W. Wang, IEEE Electron Device Lett. 29 (5), 434-437 (2008).
    132 M. Liu, Z. Abid, W. Wang, X. L. He, Q. Liu and W. H. Guan, Appl. Phys. Lett. 94 (23), 233106 (2009).
    133 W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen and M. J. Tsai, Appl. Phys. Lett. 92 (2), 022110 (2008).
    134 Y. C. Yang, F. Pan, Q. Liu, M. Liu and F. Zeng, Nano Lett. 9 (4), 1636-1643 (2009).
    135 Y. D. Chiang, W. Y. Chang, C. Y. Ho, C. Y. Chen, C. H. Ho, S. J. Lin, T. B. Wu and J. H. He, IEEE Trans. Electron Devices 58 (6), 1735-1740 (2011).
    136 J. Qi, M. Olmedo, J. J. Ren, N. Zhan, J. Z. Zhao, J. G. Zheng and J. L. Liu, ACS Nano 6 (2), 1051-1058 (2012).
    137 K. Szot, W. Speier, G. Bihlmayer and R. Waser, Nature Materials 5 (4), 312-320 (2006).
    138 R. Waser and M. Aono, Nature Materials 6, 833-840 (2007).
    139 R. Waser, R. Dittmann, G. Staikov and K. Szot, Adv. Mater. 21 (25-26), 2632-2663 (2009).
    140 C. C. Lin, C. Y. Lin, M. H. Lin, C. H. Lin and T. Y. Tseng, IEEE Trans. Electron Devices 54 (12), 3146-3151 (2007).
    141 C. Schindler, S. C. P. Thermadam, R. Waser and M. N. Kozicki, IEEE Trans. Electron Devices 54 (10), 2762-2768 (2007).
    142 I. H. Inoue, S. Yasuda, H. Akinaga and H. Takagi, Phys. Rev. B 77 (3), 035105 (2008).
    143 W. H. Guan, M. Liu, S. B. Long, Q. Liu and W. Wang, Appl. Phys. Lett. 93 (22), 223506 (2008).
    144 L. Goux, J. G. Lisoni, M. Jurczak, D. J. Wouters, L. Courtade and C. Muller, J. Appl. Phys. 107 (2), 024512 (2010).
    145 H. H. Huang, W. C. Shih and C. H. Lai, Appl. Phys. Lett. 96 (19), 193505 (2010).
    146 S. Lee, H. Kim, J. Park and K. Yong, J. Appl. Phys. 108 (7) (2010).
    147 A. Sawa, Mater. Today 11 (6), 28-36 (2008).
    148 S. S. Sheu, P. C. Chiang, W. P. Lin, H. Y. Lee, P. S. Chen, Y. S. Chen, T. Y. Wu, F. T. Chen, K. L. Su, M. J. Kao, K. H. Cheng, M. J. Tsai and Jsap, A 5ns Fast Write Multi-Level Non-Volatile 1 K bits RRAM Memory with Advance Write Scheme. (Japan Society Applied Physics, Tokyo, 2009).
    149 T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe and Y. Tokura, Appl. Phys. Lett. 86 (1), 012107 (2005).
    150 N. Xu, L. F. Liu, X. Sun, X. Y. Liu, D. D. Han, Y. Wang, R. Q. Han, J. F. Kang and B. Yu, Appl. Phys. Lett. 92 (23), 232112 (2008).
    151 H. Shima, F. Takano, H. Akinaga, Y. Tamai, I. H. Inoue and H. Takagi, Appl. Phys. Lett. 91 (1), 012901 (2007).
    152 S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J. S. Kim, J. S. Choi and B. H. Park, Appl. Phys. Lett. 85 (23), 5655-5657 (2004).
    153 J. Y. Son and Y. H. Shin, Appl. Phys. Lett. 92 (22), 222106 (2008).
    154 S. Y. Wang, C. W. Huang, D. Y. Lee, T. Y. Tseng and T. C. Chang, J. Appl. Phys. 108 (11), 114110 (2010).
    155 B. Gao, S. Yu, N. Xu, L. F. Liu, B. Sun, X. Y. Liu, R. Q. Han, J. F. Kang, B. Yu and Y. Y. Wang, Technical Digest - International Electron Devices Meeting, 563-566 (2008).
    156 S. M. Yu and H. S. P. Wong, IEEE Electron Device Lett. 31 (12), 1455-1457 (2010).
    157 B. Gao, J. F. Kang, Y. S. Chen, F. F. Zhang, B. Chen, P. Huang, L. F. Liu, X. Y. Liu, Y. Y. Wang, X. A. Tran, Z. R. Wang, H. Y. Yu and A. Chin, Technical Digest - International Electron Devices Meeting, 417-420 (2011).
    158 D. Ielmini, F. Nardi and C. Cagli, IEEE Trans. Electron Devices 58 (10), 3246-3253 (2011).
    159 U. Russo, D. Kamalanathan, D. Ielmini, A. L. Lacaita and M. N. Kozicki, IEEE Trans. Electron Devices 56 (5), 1040-1047 (2009).
    160 Y. Wang, Q. Liu, S. B. Long, W. Wang, Q. Wang, M. H. Zhang, S. Zhang, Y. T. Li, Q. Y. Zuo, J. H. Yang and M. Liu, Nanotechnology 21 (4), 045202 (2010).
    161 Y. F. Chang, T. C. Chang and C. Y. Chang, J. Appl. Phys. 110 (5), 053703 (2011).
    162 X. M. Guan, S. M. Yu and H. S. P. Wong, IEEE Trans. Electron Devices 59 (4), 1172-1182 (2012).
    163 E. D. Herderick, K. M. Reddy, R. N. Sample, T. I. Draskovic and N. P. Padture, Appl. Phys. Lett. 95 (20), 203505 (2009).
    164 K. Oka, T. Yanagida, K. Nagashima, M. Kanai, T. Kawai, J. S. Kim and B. H. Park, J. Am. Chem. Soc. 133 (32), 12482-12485 (2011).
    165 W. Y. Chang, C. A. Lin, J. H. He and T. B. Wu, Appl. Phys. Lett. 96 (24), 242109 (2010).
    166 Z.-L. Tseng, P.-C. Kao, M.-F. Shih, H.-H. Huang, J.-Y. Wang and S.-Y. Chu, Appl. Phys. Lett. 97, 212103 (2010).
    167 K. Nagashima, T. Yanagida, K. Oka, M. Kanai, A. Klamchuen, J. S. Kim, B. H. Park and T. Kawai, Nano Lett. 11 (5), 2114-2118 (2011).
    168 I.-C. Yao, D.-Y. L. Lee, T.-Y. Tseng and P. Lin, Nanotechnology 23, 145201 (2012).
    169 Y. Sato, K. Kinoshita, M. Aoki and Y. Sugiyama, Appl. Phys. Lett. 90 (3), 033503 (2007).
    170 D. Adler and J. Feinleib, Phys. Rev. B 2 (8), 3112-3134 (1970).
    171 D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. L. Lee, G. H. Kim, X.-S. L. Li, G.-S. Park, B. L. Lee, S. H. Han, M. K. Kim and C. S. Hwang, Nat. Nanotechnol. 5, 148-153 (2010).
    172 D. S. Jeong, H. Schroeder, U. Breuer and R. Waser, J. Appl. Phys. 104 (12), 123716 (2008).
    173 M. L. Volpe and J. Reddy, The Journal of Chemical Physics 53, 1117-1125 (1970).
    174 A. Atkinson, Reviews of Modern Physics 57, 437-470 (1985).
    175 K. Oka, T. Yanagida, K. Nagashima, M. Kanai, B. Xu, B. H. Park, -. Y. H. Katayama and T. Kawai, J. Am. Chem. Soc. 134, 2535-2538 (2012).
    176 http://ehs.virginia.edu/ehs/ehs.rs/rs.rpeelectronmicroscope.html.
    177 http://www.hk-phy.org/atomic_world/tem/tem02_e.html.
    178 S. FONER, REVIEW OF SCIENTIFIC INSTRUMENTS 30 (7), 548-557 (1959).
    179 F. Tian, J. Zhu and D. Wei, J. Phys. Chem. C 111 (19), 6994-6997 (2007).
    180 W. H. Meiklejohn, J. Appl. Phys. 33 (3), 1328 (1962).
    181 J. Nogues and I. K. Schuller, J. Magn. Magn. Mater. 192 (2), 203-232 (1999).
    182 J. Nogues, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J. S. Munoz and M. D. Baro, Phys. Rep.-Rev. Sec. Phys. Lett. 422 (3), 65-117 (2005).
    183 M. Kiwi, J. Magn. Magn. Mater. 234 (3), 584-595 (2001).
    184 L. Del Bianco, F. Boscherini, M. Tamisari, F. Spizzo, M. V. Antisari and E. Piscopiello, J. Phys. D-Appl. Phys. 41 (13), 134008 (2008).
    185 R. Jungblut, R. Coehoorn, M. T. Johnson, C. Sauer, P. J. Vanderzaag, A. R. Ball, T. Rijks, J. Destegge and A. Reinders, J. Magn. Magn. Mater. 148 (1-2), 300-306 (1995).
    186 T. J. Moran and I. K. Schuller, J. Appl. Phys. 79 (8), 5109-5111 (1996).
    187 Y. Ijiri, J. A. Borchers, R. W. Erwin, S. H. Lee, P. J. van der Zaag and R. M. Wolf, Phys. Rev. Lett. 80 (3), 608-611 (1998).
    188 T. J. Moran, J. Nogues, D. Lederman and I. K. Schuller, Appl. Phys. Lett. 72 (5), 617-619 (1998).
    189 J. Nogues, T. J. Moran, D. Lederman, I. K. Schuller and K. V. Rao, Phys. Rev. B 59 (10), 6984-6993 (1999).
    190 Q. F. Zhan and K. M. Krishnan, Appl. Phys. Lett. 96 (11), 112506 (2010).
    191 M. L. Silva, A. L. Dantas and A. S. Carrico, J. Magn. Magn. Mater. 292, 453-461 (2005).
    192 F. I. F. Nascimento, A. L. Dantas, L. L. Oliveira, V. D. Mello, R. E. Camley and A. S. Carrico, Phys. Rev. B 80 (14), 144407 (2009).
    193 W. L. Roth, Physical Review 110 (6), 1333-1341 (1958).
    194 T. R. McGuire and R. I. Potter, IEEE Trans. Magn. 11, 1018-1038 (1975).
    195 M. R. Fitzsimmons, C. Leighton, J. Nogues, A. Hoffmann, K. Liu, C. F. Majkrzak, J. A. Dura, J. R. Groves, R. W. Springer, P. N. Arendt, V. Leiner, H. Lauter and I. K. Schuller, Phys. Rev. B 65 (13), 134436 (2002).
    196 P. J. Jensen and H. Dreysse, Phys. Rev. B 66 (22), 220407 (2002).
    197 M. Donahue and D. Porter, OOMMF User's Guide, Version 1.1b, NISTIR 6376 [http://math.nist.gov/oommf] (1999).
    198 F. Zhang, X. Gan, X. Li, L. Wu, X. Gao, R. Zheng, Y. He, X. Liu and R. Yang, Electrochemical and Solid-State Letters 14 (10), H422-H425 (2011).
    199 Y. Yang, X. Zhang, M. Gao, F. Zeng, W. Zhou, S. Xie and F. Pan, Nanoscale 3, 1917-1921 (2011).
    200 K. Jung, H. Seo, Y. Kim, H. Im, J. Hong, J. W. Park and J. K. Lee, Appl. Phys. Lett. 90 (5), 052104 (2007).
    201 I. G. Austin and N. F. Mott, Adv. Phys. 18 (71), 41-102 (1969).
    202 Z. Fan, D. W. Wang, P.-C. Chang, W.-Y. Tseng and J. G. Lu, Appl. Phys. Lett. 85 (24), 5923-5925 (2004).
    203 Y.-C. Lee, Y.-L. Chueh, C.-H. Hsieh, M.-T. chang, L.-J. Chou, Z. L. Wang, Y.-W. Lan, C.-D. Chen, H. Kurata and S. Isoda, Small 3, 1356-1361 (2007).
    204 J. J. Yang, M. D. Pickett, X. M. Li, D. A. A. Ohlberg, D. R. Stewart and R. S. Williams, Nat. Nanotechnol. 3 (7), 429-433 (2008).
    205 S. Park, H.-S. Ahn, C.-K. Lee, H. Kim, H. Jin, H.-S. Lee, S. Seo, J. Yu and S. Han, Phys. Rev. B 77, 134103 (2008).
    206 C. Yoshida, K. Kinoshita, T. Yamasaki and Y. Sugiyama, Appl. Phys. Lett. 93, 042106 (2008).
    207 K. Kinoshtia, T. Okutani, H. Tanaka, T. Hinoki, K. Yazawa, K. Ohmi and S. Kishida, Appl. Phys. Lett. 96, 143505 (2010).
    208 Q. Liu, S. B. Long, W. Wang, S. Tanachutiwat, Y. T. Li, Q. Wang, M. H. Zhang, Z. L. Huo, J. N. Chen and M. Liu, IEEE Electron Device Lett. 31 (11), 1299-1301 (2010).
    209 D. C. Kim, M. J. Lee, S. E. Ahn, S. Seo, J. C. Park, I. K. Yoo, I. G. Baek, H. J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U. I. Chung, J. T. Moon and B. I. Ryu, Appl. Phys. Lett. 88 (23), 232106 (2006).
    210 H. D. Lee and Y. Nishi, Appl. Phys. Lett. 97 (25), 252107 (2010).
    211 B. Gao, B. Sun, H. W. Zhang, L. F. Liu, X. Y. Liu, R. Q. Han, J. F. Kang and B. Yu, IEEE Electron Device Lett. 30 (12), 1326-1328 (2009).
    212 T. G. Seong, M. R. Joung, J. W. Sun, M. K. Yang, J. K. Lee, J. W. Moon, J. Roh and S. Nahm, Jpn. J. Appl. Phys. 51 (4), 041102 (2012).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE