研究生: |
林芝吟 LIN, Chih-Yin |
---|---|
論文名稱: |
聚吡咯/多壁奈米碳管應用於室溫下人體呼氣之二氧化碳感測器 Application of Polypyrrole/Multi-wall Carbon Nanotubes CO2 Gas Sensor for Human Breath Tested at Room Temperature |
指導教授: |
戴念華
Tai, Nyan-Hwa |
口試委員: |
李紫原
Lee, Chi-Young 彭殿王 Perng, Diahn-Warng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 奈米碳管 、聚吡咯 、氣體感測器 、二氧化碳 、人體呼氣 |
外文關鍵詞: | carbon nanotubes, polypyrrole, gas sensor, carbon dioxide, human breath |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於環境檢測與提早診斷人體疾病的需求,二氧化碳感測器逐漸受到重視,因此設計出可在室溫下使用,同時具有低成本、製備快速等優點的二氧化碳感測器成為目前感測領域的研究重點。以碳材料為基底結合高分子進行改質的感測材料被廣泛應用於電阻式氣體感測器,過去的研究發現,此類型的感測器具有良好的靈敏度與可重複性。
本研究透過酸處理將多壁奈米碳管進行改質,接著以化學氧化聚合法使聚吡咯高分子聚合於奈米碳管之上,透過調整奈米碳管與吡咯單體的比例以控制聚合形貌,得到聚吡咯包覆奈米碳管的結構。奈米碳管的管狀結構可提升聚吡咯與氣體接觸的表面積,進而提升二氧化碳感測器之響應程度。本研究採用的製程耗時短,而聚吡咯高分子可於室溫下合成,使得設備成本大幅下降,提升大量製備的可行性。
本研究製備的電極在5%二氧化碳與相對濕度10%的室溫環境下具有平均4.9%的響應,響應時間為325秒,並且隨著二氧化碳濃度增加呈現正相關,且能夠分辨不同濃度的二氧化碳。另外,多天重複性測試中有相當好的穩定度,人體呼氣感測的結果也顯示,在高濕度的人體呼氣下能有穩定的感測結果,因此本研究所製備的電極深具商售價值,具有應用於檢測人體呼氣二氧化碳的潛力。
Recently, studies on the carbon dioxide (CO2) gas sensors gain intensive interest to the scientists due to the demand of environmental monitoring as well as early diagnosis of respiration diseases. It is imperative to develop CO2 gas sensors operated under room temperature with low cost and easy processing. Carbon-based materials combined with polymers have been widely used in the field of resistive gas sensors showing excellent sensitivity and repeatability. In this study, chemical oxidation polymerization process is conducted to synthesize polypyrrole (PPy) on carbon nanotubes (CNTs). By adjusting the proportion of CNTs and pyrrole monomer, we can obtain the structure of CNTs coated with PPy. The tubular structure of CNTs enhances the contact surface area for CO2 and PPy, increasing the sensitivity of CO2 gas sensors. Furthermore, the fabrication process is uncomplicated and PPy can be synthesized under room temperature. As for the sensing performance, the as-fabricated sensor exhibits the average response of 4.9% and fast response time of 325 s for 5% CO2 under 10% relative humidity and room temperature. Besides, the sensor shows excellent performance in long term repeatability test and has stable response in human breath test. In summary, the CO2 gas sensor in this work can be applied in human breath detection.
[1] H. Liao et al., Efficacy of long-term noninvasive positive pressure ventilation in stable hypercapnic COPD patients with respiratory failure: a meta-analysis of randomized controlled trials. Int J Chron Obstruct Pulmon Dis 12, 2977-2985 (2017).
[2] J. Vestbo et al., Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 187, 347-365 (2013).
[3] A. J. McGuinness, E. Sapey, Oxidative Stress in COPD: Sources, Markers, and Potential Mechanisms. J Clin Med 6, (2017).
[4] P. A. Kirkham, P. J. Barnes, Oxidative stress in COPD. Chest 144, 266-273 (2013).
[5] P. J. Barnes, Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 138, 16-27 (2016).
[6] M. D. Hannah C. Kinney, and Bradley T. Thach, M.D., The Sudden Infant Death Syndrome. The New England Journal of Medicine 361, 795-805 (2009).
[7] A. L. Byrne, M. H. Bennett, N. L. Pace, P. Thomas, Peripheral venous blood gas analysis versus arterial blood gas analysis for the diagnosis of respiratory failure and metabolic disturbance in adults. Cochrane Database of Systematic Reviews (2013).
[8] S. L. Cheng et al., COPD in Taiwan: a National Epidemiology Survey. Int J Chron Obstruct Pulmon Dis 10, 2459-2467 (2015).
[9] L. W. Hang et al., Predictive factors warrant screening for obstructive sleep apnea in COPD: a Taiwan National Survey. Int J Chron Obstruct Pulmon Dis 11, 665-673 (2016).
[10] A. Uppe, Factors Predicting Treatment Outcome in Hospitalized Patients with Acute Exacerbation of COPD (AECOPD). American Journal of Internal Medicine 6, 82-85 (2018).
[11] A. A. a. M. Miravitlles, Considerations for the Correct Diagnosis of COPD and Its Management With Bronchodilators. CHEST 154 (2), 242-248 (2018).
[12] T. M. McKeever et al., Using venous blood gas analysis in the assessment of COPD exacerbations: a prospective cohort study. Thorax 71, 210-215 (2016).
[13] J. D. Pleil, M. A. Stiegel, T. H. Risby, Clinical breath analysis: discriminating between human endogenous compounds and exogenous (environmental) chemical confounders. Journal of Breath Research 7, 1-11 (2013).
[14] T. Chen, T. Liu, T. Li, H. Zhao, Q. Chen, Exhaled breath analysis in disease detection. Clin Chim Acta 515, 61-72 (2021).
[15] J. E. Ellis, A. Star, Carbon Nanotube Based Gas Sensors toward Breath Analysis. Chempluschem 81, 1248-1265 (2016).
[16] S. P. Das, Mrinal, Review—Non-Invasive Monitoring of Human Health by Exhaled Breath Analysis: A Comprehensive Review. Journal of The Electrochemical Society 167, (2020).
[17] K. S. KIYOSHI ZAYASU, SHOJI OKINAGA, MUTSUO YAMAYA,, a. H. S. TAKASHI OHRUI, Increased Carbon Monoxide in Exhaled Air of Asthmatic Patients. American Journal of Respiratory and Critical Care Medicine 156, 1140-1143 (1997).
[18] S. L. I Horvath, T Wodehouse, S A Kharitonov, P J Cole, P J Barnes, Increased levels of exhaled carbon monoxide in bronchiectasis: a new marker of oxidative stress. Thorax 53, 867-870 (1998).
[19] D. A. Lindberg, Hydrogen Breath Testing in Adults. Gastroenterology Nursing 32(1), 19-24 (2009).
[20] K.-C. S. a. L.-Y. L. Diahn-Warng Perng, Airway Inflammation and Airflow Limitation in COPD. Current Respiratory Medicine Reviews 2, 419-426 (2006).
[21] S. Iijima, Helical microtubules of graphitic carbon. NATURE 354, 56-58 (1991).
[22] D. Vairavapandian, P. Vichchulada, M. D. Lay, Preparation and modification of carbon nanotubes: review of recent advances and applications in catalysis and sensing. Anal Chim Acta 626, 119-129 (2008).
[23] N. H. Tai et al., Optimization of processing parameters of the chemical vapor deposition process for synthesizing high-quality single-walled carbon nanotube fluff and roving. Composites Science and Technology 72, 1855-1862 (2012).
[24] S. M. Vm, Abdul Rahman Abdullah, Ahmad Zuhairi Chai, Siang-Piao, Role of Reaction and Factors of Carbon Nanotubes Growth in Chemical Vapour Decomposition Process Using Methane—A Highlight. Journal of Nanomaterials 2010, 1-11 (2010).
[25] J. L. S. G. Ovejero, M. D. Romero, A. Rodrı´guez, M. A. Ocan˜ a, G. Rodrı´guez, and J. Garcı´a, Multiwalled Carbon Nanotubes for Liquid-Phase Oxidation. Functionalization, Characterization, and Catalytic Activity. Industrial and Engineering Chemistry Research 45, 2206-2212 (2006).
[26] Y. Y. Wei, G. Eres, V. I. Merkulov, D. H. Lowndes, Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition. Applied Physics Letters 78, 1394-1396 (2001).
[27] O. A. Nerushev, S. Dittmar, R. E. Morjan, F. Rohmund, E. E. B. Campbell, Particle size dependence and model for iron-catalyzed growth of carbon nanotubes by thermal chemical vapor deposition. Journal of Applied Physics 93, 4185-4190 (2003).
[28] M. Okai, T. Muneyoshi, T. Yaguchi, S. Sasaki, Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition. Applied Physics Letters 77, 3468-3470 (2000).
[29] G. D. M. S. DRESSELHAUS, and R. SAITO, Physics of Carbon Nanotubes. Carbon 33, 883-891 (1995).
[30] J. Prasek et al., Methods for carbon nanotubes synthesis—review. Journal of Materials Chemistry 21, 15872–15884 (2011).
[31] Z. R. ET Thostenson, TW Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Composites science and technology 61, 1899-1912 (2001).
[32] P. R. Bandaru, Electrical properties and applications of carbon nanotube structures. J Nanosci Nanotechnol 7, 1239-1267 (2007).
[33] V. Datsyuk et al., Chemical oxidation of multiwalled carbon nanotubes. Carbon 46, 833-840 (2008).
[34] S. Bag, K. Pal, A PCB Based Chemiresistive Carbon Dioxide Sensor Operating at Room Temperature Under Different Relative Humidity. IEEE Transactions on Nanotechnology 18, 1119-1128 (2019).
[35] M. Rahimabady et al., Dielectric nanocomposite of diphenylethylenediamine and P-type multi-walled carbon nanotube for capacitive carbon dioxide sensors. Sensors and Actuators B: Chemical 243, 596-601 (2017).
[36] Wikipedia contributors, in Wikipedia, The Free Encyclopedia.
[37] U. Kumar, B. C. Yadav, T. Haldar, C. K. Dixit, P. K. Yadawa, Synthesis of MWCNT/PPY nanocomposite using oxidation polymerization method and its employment in sensing such as CO2 and humidity. Journal of the Taiwan Institute of Chemical Engineers 113, 419-427 (2020).
[38] A. Yussuf, M. Al-Saleh, S. Al-Enezi, G. Abraham, Synthesis and Characterization of Conductive Polypyrrole: The Influence of the Oxidants and Monomer on the Electrical, Thermal, and Morphological Properties. International Journal of Polymer Science 2018, 1-8 (2018).
[39] L. T. Fatma Selampinar, Ural Akbulut, Talat Yalcin, Sefik Suzer, A conducting composite of polypyrrole II. As a gas sensor. Synthetic Metals 68, 109-116 (1995).
[40] A. L. Pang, A. Arsad, M. Ahmadipour, Synthesis and factor affecting on the conductivity of polypyrrole: a short review. Polymers for Advanced Technologies 32, 1428-1454 (2020).
[41] R. B. Choudhary, S. Ansari, B. Purty, Robust electrochemical performance of polypyrrole (PPy) and polyindole (PIn) based hybrid electrode materials for supercapacitor application: A review. Journal of Energy Storage 29, 101302 (2020).
[42] 王炳順, 以Polypyrrole修飾的碳電極感測半胱胺酸與高半胱胺酸的研究. 國立成功大學化學工程學系, 碩士論文, 台灣台南 (2008).
[43] S. Xu et al., Carbon dioxide sensors based on a surface acoustic wave device with a graphene–nickel–l-alanine multilayer film. Journal of Materials Chemistry C 3, 3882-3890 (2015).
[44] E. B. a. M. Telting-Diaz, Electrochemical Sensors. Analytical Chemistry 74, 2781-2800 (2002).
[45] S. Bag, K. Pal, Sulfonated poly (ether ether ketone) based carbon dioxide gas sensor: Impact of sulfonation degree on sensing behavior at different humid condition. Sensors and Actuators B: Chemical 303, 127115 (2020).
[46] X. Liu et al., A survey on gas sensing technology. Sensors (Basel) 12, 9635-9665 (2012).
[47] A. Goldoni, V. Alijani, L. Sangaletti, L. D'Arsiè, Advanced promising routes of carbon/metal oxides hybrids in sensors: A review. Electrochimica Acta 266, 139-150 (2018).
[48] H. J. Yoon et al., Carbon dioxide gas sensor using a graphene sheet. Sensors and Actuators B: Chemical 157, 310-313 (2011).
[49] E. Llobet, Gas sensors using carbon nanomaterials: A review. Sensors and Actuators B: Chemical 179, 32-45 (2013).
[50] S. Muhammad Hafiz et al., A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide. Sensors and Actuators B: Chemical 193, 692-700 (2014).
[51] T. Han, A. Nag, S. Chandra Mukhopadhyay, Y. Xu, Carbon nanotubes and its gas-sensing applications: A review. Sensors and Actuators A: Physical 291, 107-143 (2019).
[52] N. L. W. Septiani, B. Yuliarto, Review—The Development of Gas Sensor Based on Carbon Nanotubes. Journal of The Electrochemical Society 163, B97-B106 (2016).
[53] T. Z. Syed Mubeen, Bongyoung Yoo, Marc A. Deshusses, and Nosang V. Myung, Palladium Nanoparticles Decorated Single-Walled Carbon Nanotube Hydrogen Sensor. Journal of Physical Chemistry C 111, 6321-6327 (2007).
[54] Z. D. Lin, S. J. Young, C. H. Hsiao, S. J. Chang, Adsorption sensitivity of Ag-decorated carbon nanotubes toward gas-phase compounds. Sensors and Actuators B: Chemical 188, 1230-1234 (2013).
[55] F. Rigoni et al., Gas sensing at the nanoscale: engineering SWCNT-ITO nano-heterojunctions for the selective detection of NH3 and NO2 target molecules. Nanotechnology 28, 035502 (2017).
[56] M. Ding, D. C. Sorescu, A. Star, Photoinduced charge transfer and acetone sensitivity of single-walled carbon nanotube-titanium dioxide hybrids. J Am Chem Soc 135, 9015-9022 (2013).
[57] A. H. a. J. Li, Solid State Electronic Sensors for Detection of Carbon Dioxide. Sensors 19, 3848 (2019).
[58] M. Ding, Y. Tang, P. Gou, M. J. Reber, A. Star, Chemical sensing with polyaniline coated single-walled carbon nanotubes. Adv Mater 23, 536-540 (2011).
[59] P. Kong et al., Conjugated HCl-doped polyaniline for photocatalytic oxidative coupling of amines under visible light. Catalysis Science & Technology 9, 753-761 (2019).
[60] Y. G. Ko, S. S. Shin, U. S. Choi, Primary, secondary, and tertiary amines for CO2 capture: designing for mesoporous CO2 adsorbents. J Colloid Interface Sci 361, 594-602 (2011).
[61] A. Star, T. R. Han, V. Joshi, J. C. P. Gabriel, G. Grüner, Nanoelectronic Carbon Dioxide Sensors. Advanced Materials 16, 2049-2052 (2004).
[62] S. Srinives, T. Sarkar, R. Hernandez, A. Mulchandani, A miniature chemiresistor sensor for carbon dioxide. Anal Chim Acta 874, 54-58 (2015).
[63] 謝秉煊, 利用濺鍍法沉積奈米金顆粒於三維發泡石墨烯表面並探討其在室溫下氨氣濃度感測之應用. 國立清華大學材料科學工程學系, 碩士論文, 台灣新竹 (2015).
[64] 徐漫齡, 製備三維奈米金顆粒/發泡石墨烯複合材料並應用於室溫下氨氣之感測. 國立清華大學材料科學工程學系, 碩士論文, 台灣新竹 (2016).
[65] 林正傑, 聚乙烯亞胺-聚乙二醇/多壁奈米碳管之雙層結構應用於室溫下二氧化碳之監測. 國立清華大學材料科學工程學系, 碩士論文, 台灣新竹 (2019).
[66] 范韻如, 碳酸鈉/改質氧化石墨烯應用於室溫人體呼氣二氧化碳之感測器. 國立清華大學材料科學工程學系, 碩士論文, 台灣新竹 (2020).
[67] 詹貴麟, 過渡金屬氧化物應用於水氣傳感器與光催化降解染料及抗菌表現. 國立清華大學材料科學工程學系, 博士論文, 台灣新竹 (2019).
[68] J. P. Trigueiro et al., Purity evaluation of carbon nanotube materials by thermogravimetric, TEM, and SEM methods. J Nanosci Nanotechnol 7, 3477-3486 (2007).
[69] E. R. A. M. Rao, Shunji Bandow, Bruce Chase,, K. A. W. P. C. Eklund, S. Fang, K. R. Subbaswamy,, A. T. M. Menon, R. E. Smalley, G. Dresselhaus,, M. S. Dresselhaus, Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes. SCIENCE 275, 187-191 (1997).
[70] M. S. Dresselhaus, A. Jorio, R. Saito, Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy. Annual Review of Condensed Matter Physics 1, 89-108 (2010).
[71] J.-Y. Kwon, H.-D. Kim, Preparation and properties of acid-treated multiwalled carbon nanotube/waterborne polyurethane nanocomposites. Journal of Applied Polymer Science 96, 595-604 (2005).
[72] N. G. Sahoo, Y. C. Jung, H. H. So, J. W. Cho, Polypyrrole coated carbon nanotubes: Synthesis, characterization, and enhanced electrical properties. Synthetic Metals 157, 374-379 (2007).
[73] M. C. B. Andréa Santos Liu, Liu Yao Cho, Electrodeposition of Polypyrrole Films on Aluminum Surfaces from a p-toluene Sulfonic Acid Medium. Materials Research 12, 503-507 (2009).
[74] M. A. Chougule et al., Synthesis and Characterization of Polypyrrole (PPy) Thin Films. Soft Nanoscience Letters 01, 6-10 (2011).
[75] Y. Li, B. Zou, C. Hu, M. Cao, Nitrogen-doped porous carbon nanofiber webs for efficient CO2 capture and conversion. Carbon 99, 79-89 (2016).
[76] E. A. Sanches et al., Nanostructured Polypyrrole Powder: A Structural and Morphological Characterization. Journal of Nanomaterials 2015, 1-8 (2015).
[77] D. Zhang, Z. Wu, X. Zong, Y. Zhang, Fabrication of polypyrrole/Zn2SnO4 nanofilm for ultra-highly sensitive ammonia sensing application. Sensors and Actuators B: Chemical 274, 575-586 (2018).
[78] M. Setka et al., Raman and XPS studies of ammonia sensitive polypyrrole nanorods and nanoparticles. Sci Rep 9, 8465 (2019).
[79] A. Joshi, S. A. Gangal, S. K. Gupta, Ammonia sensing properties of polypyrrole thin films at room temperature. Sensors and Actuators B: Chemical 156, 938-942 (2011).
[80] K. H. An, S. Y. Jeong, H. R. Hwang, Y. H. Lee, Enhanced Sensitivity of a Gas Sensor Incorporating Single-Walled Carbon Nanotube–Polypyrrole Nanocomposites. Advanced Materials 16, 1005-1009 (2004).
[81] S. A. Waghuley, S. M. Yenorkar, S. S. Yawale, S. P. Yawale, Application of chemically synthesized conducting polymer-polypyrrole as a carbon dioxide gas sensor. Sensors and Actuators B: Chemical 128, 366-373 (2008).
[82] O. Hamouma, N. Kaur, D. Oukil, A. Mahajan, M. M. Chehimi, Paper strips coated with polypyrrole-wrapped carbon nanotube composites for chemi-resistive gas sensing. Synthetic Metals 258, 116223 (2019).