研究生: |
王海富 Hai-Fu Wang |
---|---|
論文名稱: |
應用小波技術於無線感知器網路之時空域資料聚集 Temporal and Spatial Data Aggregation on WSNs Using Wavelet Coding Techniques |
指導教授: |
王家祥
Jia-Shung Wang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 50 |
中文關鍵詞: | 無線感應器網路 、小波轉換壓縮 、範圍查詢 |
外文關鍵詞: | Sensor networks, wavalet coding, range query |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無線感知器網路(Wireless Sensor Networks)包含了大量且低電量的無線感應器(Sensor)裝置,利用這裝置可以提供我們用來觀察生活周遭環境的功用,尤其是過去我們比較無法觀測到的現象。在這一篇論文中,我們考慮怎麼在利用無線感知器網路中有效的利用無線感知器有限電量和儲存空間來回答使用者所提出的區間查詢(range query)的統計量值。我們提出的演算法是基於傳輸量與失真的控制和多層解析度的小波轉換編碼技術來解決在無線感知器上產生的連續資料串流。我們的目標就是要讓系統盡可能的提供使用指在有限定的傳輸量和儲存空間下一個可以得到一個區間查詢的近似統計量值。我們也提出了一個傳輸量與失真度之間控制的最佳解的公式,來決定系統中的無線感應器該如何去控制自己的傳輸量,使得系統的總失真度是最小的。在實驗中,我們驗證了無論是在時間域使用線性回歸和小波壓縮或是在空間域使用關係係數做列順序排列,都可得到很好的壓縮效果來降低傳輸量。最後也驗證了在各種不同的區間查詢,我們整個系統架構在低傳輸量下,使用我們所提出最佳化公式來分配傳輸量,可以有效的將傳輸量分散的分配給不同的無線感知器,使得無線感知器壓縮資料後利用限制的傳輸量可以達到比傳統平均分配傳輸量的失真率還要更低。
Network systems consisting of a large number of small, low-power, wireless sensing devices offer new ability to observe the physical world, especially for monitoring previously unobservable phenomena. In this thesis, we consider answering range queries that request certain of statistics on a subset of nodes in wireless sensor networks in an energy and space efficient way. An algorithm based upon a rate-distortion multi-resolution wavelet coding technique is presented for deliberately selecting coefficients on the continuous sensing data streams. The design goal is to approximate the requested statistics with bits delivered from sensors to the base station as few as possible and with limited space usage. We also deduce a rate-distortion control formula to determine how to optimally allocate bit rate for sensors under constrained total bit rate so as to minimize the overall distortion of the collected data. The experimental results show the R-D proposed method efficiently reduces the transmission amount using the combination of linear regression, spatial correlation and wavelet coding. Finally, we verify our R-D optimal allocation, which can efficiently allocate appropriate bit rate to every sensor node, so as to archive minimizing distortion for range queries.
[1]G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,” Communications of the ACM, vol. 43, no. 5, pp. 51–58, May 2000.
[2]J. M. Hellerstein, P. J. Haas, and Helen J. Wang, “Online Aggregation,” in Proc. ACM SIGMOD Int’l Conf. Management of Data, Tucson, Arizona, May 1997.
[3]W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient communication protocol for wireless microsensor networks,” in Proc. Hawaii Int’l Conf. System Sciences (HICSS’00), Jan. 2000.
[4]C. Intanagonwiwat, R. Govindan, and D. Estrin, ”Directed diffusion: A scalable and robust communication paradigm for sensor networks,” in Proc. ACM Int’l Conf. Mobile Computing and Networking (MOBICOM 2000), Aug. 2000, pp. 56–67.
[5]S. Madden, M. J. Franklin, and J. M. Hellerstein, “TAG: A Tiny AGgregation Service for Ad-Hoc Sensor Networks,” in Proc. Annu. Symp. Operating Systems Designs and Implementation (OSDI), Dec. 2002, pp. 131–146.
[6]C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann, “Impact of Network Density on Data Aggregation in Wireless Sensor Networks,” in Proc. Int’l Con. Distributed Computing Systems (ICDCS’02), 2002.
[7]A. Deshpande, S. Nath, P. B. Gibbons, and S. Seshan, “Cache-and-query for wide area sensor databases,” in Proc. ACM SIGMOD Int’l Conf. Management of Data , 2003, pp.503–514.
[8]I. Solis and K. Obraczka, “The impact of timing in data aggregation for sensor networks,” in Proc. IEEE Int’l Conf. Communications (ICC’04), 2004.
[9]X. Tang and J. Xu, “Extending network lifetime for precision constrained data aggregation in wireless sensor networks,” in Proc. IEEE Int’l Conf. INFOCOM (INFOCOM’06), 2006.
[10]M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysanthis, “TiNA: A scheme for temporal coherency-aware in-network aggregation,” in Proc. ACM MobiDE Workshop, Sept. 2003, pp. 69–76.
[11]Q. Han, S. Mehrotra, and N. Venkatasubramanian, “Energy efficient data collection in distributed sensor environments,” in Proc. Int’l Conf. Distributed Computing (ICDCS’04), Mar. 2004, pp. 590–597.
[12]A. Deligiannakis, Y. Kotidis, and N. Roussopoulos, “Hierarchical in-network data aggregation with quality guarantees,” in Proc. Int’l Conf. Extending DataBase Technology (EDBT’04), Mar. 2004, pp. 658–675.
[13]D. Ganesan, D. Estrin, and J. Heidemann, “DIMENSIONS: Why do we need a new data handling architecture for sensor networks?” in Proc. ACM Workshop Hot Topics In Networks (HotNets-I), Princeton, NJ, Oct. 2002.
[14]K. Chakrabarti, M. N. Garofalakis, R. Rastogi, and K. Shim, “Approximate query processing using wavelets,” Int’l Journal Very Large Data Bases (VLDB), vol. 10, no. 2, pp.199–223, Oct. 2001.
[15]Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang, “Multi-Dimensional Regression Analysis of Time-Series Data Streams,” in Proc. Int’l Conf. Very Large Data Bases, Aug. 2002, pp. 323–334.
[16]E. Keogh and M. Pazzani, “An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback,” in Proc. Int’l Conf. Knowledge Discovery and Data Mining (KDD’98), 1998, pp. 239–243.
[17]E. Keogh and P. Smyth, “A probabilistic approach to fast pattern matching in time series databases,” in Proc. Int’l Conf. Knowledge Discovery and Data Mining (KDD’97), 1997, pp. 24–30.
[18]E. J. Keogh, “Fast similarity search in the presence of longitudinal scaling in time series databases,” in Proc. IEEE Int’l Conf. Tools with Artificial Intelligence (ICTAI’97), 1997, pp. 578–584.
[19]J. J. Lim and K. G. Shin, “Energy-efficient self-adapting online linear forecasting for wireless sensor network applications,” in Proc. IEEE Int’l Conf. Mobile Adhoc and Sensor Systems (MASS’05), 2005.
[20]B. Krishnamachari, D. Estrin, and S. B. Wicker, “The impact of data aggregation in wireless sensor networks,” in Proc. Int’l Workshop Distributed Event-based Systems (DEBS’02), 2002.
[21]S. Pattem, B. Krishnmachari, and R. Govindan, “The impact of spatial correlation on routing with compression in wireless sensor networks,” in Proc. IEEE Int’l Symp. Information Processing in Sensor Networks (IPSN’04), Apr. 2004, pp. 28–35.
[22]D. Petrovic, R. Shah, K. Ramchandran, and J. Rabaey, “Data funneling: routing with aggregation and compression for wireless sensor networks,” in Proc. IEEE Int’l Conf. Sensor Network Protocols and Applications (SNPA’03), May 2003, pp.156–162.
[23]M. Sharifzadeh and C. Shahabi, “Supporting Spatial Aggregation in Sensor Network Databases,” in Proc. ACM Int’l Symp. Advances in Geographic Information Systems (ACM-GIS'04), Nov. 2004, pp.166–175.
[24]A. Jindal and K. Psounis, “Modeling spatially-correlated sensor network data,” in Proc. IEEE Int’l Conf. Sensor and Ad Hoc Communications and Networks (SECON’04), 2004, pp. 162–171.
[25]J. S. Vitter and M. Wang. “Approximate Computation of Multidimensional Aggregates of Sparse Data Using Wavelets,” in Proc. ACM SIGMOD Int’l Conf. Management of Data, May 1999, pp. 193–204.
[26]A. Ciancio and A. Ortega, “A distributed wavelet compression algorithm for wireless sensor networks using lifting,” in Proc. Int’l Conf. Acoustics, Speech and Signal Processing (ICASSP’04), May 2004, pp. 633–636.
[27]M. Garofalakis and P. B. Gibbons, “Wavelet synopses with error guarantee,” in Proc. ACM SIGMOD Int’l Conf. Management of Data, June 2002.
[28]M. Garofalakis and A. Kumar, “Deterministic Wavelet Thresholding for Maximum-Error Metrics,” in Proc. ACM Principles of Database Systems (PODS’04), 2004, pp. 166–176.
[29]H. Chen, J. Li, and P. Mohapatra, “RACE: Time series compression with rate adaptivity and error bound for sensor networks,” Proc. IEEE Int’l Conf. Mobile Adhoc and Sensor Systems (MASS’04), Oct. 2004, pp. 124–133.
[30]J. S. Vitter, M. Wang, and B. Iyer, “Data cube approximation and histograms via wavelets,” in Proc. Int’l Conf. Information and Knowledge Management (CIKM’98), Nov. 1998, pp. 69–84.
[31]S. Mallat and F. Falzon, “Analysis of low bit rate image transform coding,” IEEE Trans. Signal Processing, vol. 46, issue 4, pp. 1027–1042, 1998.
[32]GOOVAERTS, P. 1997. Geostatistics for Natural Resources Evaluation. Oxford University Press.INT. 2004. Intel lab data, http://berkeley.intel-research.net/labdata.