簡易檢索 / 詳目顯示

研究生: 陳庭浩
Chen, Ting-Hao
論文名稱: 以CMOS微懸臂樑量測液體黏滯度與密度之設計與應用
CMOS Micromachined Cantilevers for Detection of Fluid Viscosity and Density
指導教授: 盧向成
LU, SHIANG-CHENG
口試委員: 傅建中
FU, CHIEN-CHUNG
劉承賢
LIU, CHENG-HSIEN
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 108
中文關鍵詞: 微懸臂樑壓電式壓阻感測黏滯度密度
外文關鍵詞: Microcantilever, Piezoelectric Chip, Piezoresistive Sensing, Viscosity, Density
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文目的在於探討如何以微結構懸臂樑來達到量測液體之黏滯度與密度,其驅動的方式是透過晶片下面的壓電片振動而來,為了能夠感測微懸臂樑的振動行為,結構的感測方式則是運用多晶矽材料的壓阻感測器沉積在微懸臂樑固定端之中,以利電訊號傳遞以及回授的振盪電路。
    本晶片使用TSMC 2P4M 0.35 m CMOS製程,將壓電式微懸臂樑結構、感測電路整合於單一個晶片上,晶片總面積為2.8 mm × 2.8 mm,利用CMOS製程將氧化層及多晶矽層當作振動結構的質量塊,將微懸臂樑設計不同長度、寬度及厚度來比較感測度,其中較寬的結構可以得到較高的量測品質因素,晶片結構的共振模態由壓電片z軸垂直振動的驅動而來,其振動的位移可由外加的交流電壓大小來改變,可避免較大的電壓或電流驅動導致結構或是晶片電路的損壞,最後以簡單、低成本的方式開發一套完整的後製程。
    完成製程後,微懸臂樑結構量測的結果,空氣共振頻率測得為9.29 kHz,模擬則為10.21 kHz,其誤差原因是製程後導致微懸臂樑厚度變薄,另外在純水溶液之共振頻率為2.62 kHz、品質因素為1.75,透過這些量測數值可以間接推得該液體的黏滯度為0.90 cp、密度為768.2 kg/m3,與參考值之黏滯度為1.002 cp、密度為998.2 kg/m3甚為接近。結構驅動部分採用壓電片材料,將晶片黏著於壓電片上並外接網路分析儀與高壓放大器產生交流電壓驅動之,壓電片與晶片的振動位移和頻率可由網路分析儀或是訊號產生器來做及時的調整。感測電路部分使用壓阻感測器與電壓緩衝器作為感測訊號的接收方式,再經過補償電路,確認開迴路增益與相位符合巴克豪森準則,最後成功將空氣共振頻率達到穩定的振盪。


    A thesis proposes a method for measuring viscosity and density of fluids using microcantilever beam on chip. Microcantilever are made of silicon oxide and driven by a piezoelectric actuator. In order to monitor microcantilever resonant frequency, polycrystalline silicon deposited on the anchor of microcantilever is used to provide piezoresistive sensing of the motion.
    The integrated chip containing the mechanical structure, sensing and buffer circuit, is implemented by using the TSMC 2P4M 0.35μm CMOS process. The chip area is 2.8 × 2.8 mm2. We use oxide and polycrystalline silicon layer of CMOS process as proof mass and design structures of different lengths, widths and thicknesses to compare the sensing performance. The wider structure can obtain higher quality factor from the measurement. The piezoelectric sheet will provide z-axis oscillation mode to drive microcantilever and the vibration displacement can be adjusted by changing AC voltage. Therefore, we can avoid damage to the chip or structure when using larger driving voltage or current. Finally, we develop a convenient and low-cost post fabrication process and successfully fabricate the microcantilever beam device.
    The fabricated microcantilever structure shows the measured and simulated resonant frequencies at 9.29 kHz and 10.21 kHz, respectively. The difference is due to the post fabrication process, that causes structure to become thinner. The measured resonant frequency and quality factor are 2.62 kHz and 1.75, respectively, for DI water. Through above measurement, we can indirectly obtain the viscosity and density of liquid. Besides sensing circuit on chip, we also set up external compensation circuit to make the system oscillate in the air.

    摘要 I Abstract II 致謝 III 符號解釋 IV 目錄 VI 圖目錄 VIII 表目錄 XVII 第1章 緒論 19 1-1 前言 19 1-2 文獻回顧 21 1-3 研究動機 24 1-4 晶片系統架構 25 第2章 微懸臂樑結構設計與製作 28 2-1 液體理論分析 28 2-2 液體黏滯度與密度計算 31 2-3 結構設計與模擬 32 2-4 後製程設計 38 2-5 量測平台架設 39 第3章 外接補償電路之設計 42 3-1 振盪迴圈 42 3-2 本論文之振盪迴圈架構 44 3-3 感測電路 45 3-4 空氣振盪之補償電路 49 3-5 開迴路之補償電路 54 第4章 量測與討論 56 4-1 後製程量測 56 4-2 結構模態量測 63 4-3 結構在真空中自然振頻與空氣中共振頻率比較 71 4-4 電路量測 72 4-5 系統量測 73 4-6 液體量測 76 4-7 不同結構寬度在液體量測之品質因素比較 84 4-8 液體黏滯度與密度之計算 85 4-9 量測與製程討論 92 第5章 結論與未來 100 第6章 參考文獻 102 第7章 附錄 105 7-1 微懸臂樑結構之浸泡深度對於其共振頻率變化之影響 105 7-2 補償電路之放大器規格表 107 7-3 壓電片致動器規格表 108

    [1] J. M. Bustillo, R. T. Howe, and R. S. Muller, "Surface micromachining for microelectromechanical systems," Proc. IEEE, vol. 86, pp. 1552-1574, August. 1998.
    [2] J.E. Sader, "Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope," Journal of Applied Physics, 84 64–76 1998.
    [3] Cornelis A., V. Eysden, and J.E. Sader, "Resonant frequencies of a rectangular cantilever beam immersed in a fluid," Journal of Applied Physics, 100, 114916 2006.
    [4] Cornelis A. V. Eysden, and J.E. Sader, "Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope: Arbitrary mode order," Journal of Applied Physics, 101, 044908 2007.
    [5] Cornelis A. V. Eysden, and J.E. Sader, "Frequency response of cantilever beams immersed in compressible fluids with applications to the atomic force microscope," Journal of Applied Physics, 106, 094904 2009.
    [6] A. Maali, C. Hurth, R. Boisgard, C. Jai, T. Cohen-Bouhacina, and J.P. Aime, "Hydrodynamics of oscillating atomic force microscopy cantilevers in viscous fluids," Journal of Applied Physics, 97, 074907 2005.
    [7] O. Cakmak, C. Elbuken, E. Ermek, A. Mostafazadeh, I. Baris, B. Erdem Alaca, I.H. Kavakli, and H. Urey, "Microcantilever based disposable viscosity sensor for serum and blood plasma measurements," Methods 63 225–232 2013.
    [8] O. Cakmak, C. Elbuken, E. Ermek, G.G. Yaralioglu, and H. Urey, "Precision density and viscosity measurement using two cantilevers with different widths," Sensors and Actuators A 232 141–147 2015.
    [9] M. Youssry, N. Belmiloud, B. Caillard, C. Ayela, C. Pellet, and I. Dufour, "A straightforward determination of fluid viscosity and density using microcantilevers : From experimental data to analytical expressions," Sensors and Actuators A 172 40-46 2011.
    [10] G. Eris, A.A. Bozkurt, A. Sunol, A. Jonásˇ, A. Kiraz, B.E. Alaca, and C. Erkey, "Determination of viscosity and density of fluids using frequency response of microcantilevers," Journal of Supercritical Fluids 105 179–185 2015.
    [11] C. Bergaud, and L. Nicu, "Viscosity measurements based on experimental investigations of composite cantilever beam eigenfrequencies in viscous media," Review of Scientific Instruments 71, 2487 2000.
    [12] I. Dufour, A. Maali, Y. Amarouchene, C. Ayela, B. Caillard, A. Darwiche, M. Guirardel, H. Kellay, E. Lemaire, F. Mathieu, C. Pellet, D. Saya, M. Youssry, L. Nicu, and A. Colin, "The microcantilever : a versatile tool for measuring the rheological properties of complex fluids," Journal of Sensors Volume, Article ID 719898, 9 pages 2012.
    [13] M. Youssry, E. Lemaire, B. Caillard, A. Colin, and I. Dufour, "On-chip characterization of the viscoelasticity of complex fluids using microcantilevers," Measurement Science and Technology 23 125306 10pp 2012.
    [14] K. Rijal, and R. Mutharasan, "Piezoelectric-excited millimeter-sized cantilever sensors detect density differences of a few micrograms/mL in liquid medium," Sensors and Actuators B 124 237–244 2007.
    [15] G.A. Campbell, and R. Mutharasan, "Sensing of liquid level at micron resolution using self-excited millimeter-sized PZT-cantilever," Sensors and Actuators A 122 326–334 2005.
    [16] M.L. Mather, M. Rides, C.R.G. Allen, and P.E. Tomlins, "Liquid viscoelasticity probed by a mesoscale piezoelectric bimorph cantilever," Journal of Rheology 56, 99 2012.
    [17] A. Agoston, F. Keplinger, and B. Jakoby, "Evaluation of a vibrating micromachined cantilever sensor for measuring the viscosity of complex organic liquids," Sensors and Actuators A 123–124 82–86 2005.
    [18] R. Cox, F. Josse, M.J. Wenzel, S.M. Heinrich, and I. Dufour, "Generalized model of resonant polymer-coated microcantilevers in viscous liquid media," Analytical Chemistry, 80, 5760–5767 2008.
    [19] M. Hennemeyer, S. Burghardt, and R.W. Stark, "Cantilever Micro-rheometer for the Characterization of Sugar Solutions," Sensors, 8, 10-22 2008.
    [20] R. Motamedi, and P.M. Wood-Adams, "Measurement of fluid properties using an acoustically excited atomic force microscope microcantilever," Journal of Rheology 54, 959 2010.
    [21] P. Rust, I. Leibacher, and J. Dual, "Temperature Controlled Viscosity and Density Measurements on a Microchip with High Resolution and Low Cost," Procedia Engineering 25 587–590 2011.
    [22] I. Dufour, E. Lemaire, B. Caillard, H. Debeda, C. Lucat, S.M. Heinrich, F. Josse, and O. Brand, "Effect of Hydrodynamic Force on Microcantilever Vibrations: Applications to Liquid-Phase Chemical Sensing," Electrical and Computer Engineering Faculty Research and Publications 1-1-2013.
    [23] M.L. Mather, M. Rides, C.R.G. Allen, and P.E. Tomlins, "Liquid viscoelasticity probed by a mesoscale piezoelectric bimorph cantilever," Journal of Rheology 56, 99 2012.

    QR CODE