研究生: |
楊謹綱 Yang, Chin-Kang |
---|---|
論文名稱: |
使用掃描穿遂顯微鏡探測在原子解析度下表面能態和塊材能態的耦合強度 Probing the surface state to bulk state coupling strength with atomic resolution by scanning tunneling microscope |
指導教授: |
齊正中
Chi, Cheng-Chung |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 112 |
中文關鍵詞: | 掃描式穿遂電子顯微鏡 、表面能態 、塊材能態 、表面跟塊材間的耦合強度 、矽(111) 7x7 重構表面 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自從Binning發明了掃描式穿遂顯微鏡以後,它就變成了研究原子尺度下樣品表面能態及樣品塊材能態的有利工具。許多研究者使用這個工具以及它特有的能力來研究表面原子的排列及電子的能態密度。雖然有大量的研究成果被發表,但是很少有人使用這一工具來探索原子尺度下表面和塊材之間耦合強度的特性。在論文中,我們便使用它來研究在矽(111) - 7 ´ 7重構表面上的這個特性。當我們量測表面形貌及能態譜圖時,我們慢慢地讓針靠近樣品。其結果顯示當針相當靠近樣品時,表面形貌的對稱性被破壞了。而且能態譜圖也從原本的金屬性表面能態密度變成帶有能隙的矽塊材能態密度。實驗的結果表明,出現這種現象的原因不僅僅只是來自於針和樣品表面。為了解釋這樣的現象,我們發展了一個模型。在這個模型中,穿遂電流大小的改變會改變針跟表面能態之間的耦合強度及表面跟塊材能態之間的耦合強度,進而使表面能態的化學勢產生變化。計算得出的結果和實驗結果相當吻合。因此,根據我們的模型,在針相當接近樣品表面時,塊材能態對穿遂電流的貢獻越大。在4.3K的溫度下,塊材能態成為最主要的貢獻,因此我們在這個條件下其實看到了塊材的能態。論文中的實驗及理論模型也提供了一個研究塊材能態及表面和塊材間耦合強度的新方法。
1. C. J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford Uni. Press, 2008), 2nd ed.
2. S. H. Pan et al., Nature 413, 282 (2001).
3. G. A. Fiete and E. J. Heller, Rev. Mod. Phys. 75, 933 (2003).
4. I. Matsuda, M. Ueno, T. Hirahara, R. Hobara, H. Morikawa, C. Liu, and S. Hasegawa, Phys. Rev. Lett. 93, 236801 (2004).
5. F. Meier, L. Zhou, J. Wiebe, and R. Wiesendanger, Science 320, 82 (2008).
6. W. J. Kaiser and L. D. Bell, Phys. Rev. Lett. 60, 1406 (1988).
7. A. Ohtomo and H. Y. Hwang, Nature 427, 423 (2004).
8. S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science 313, 1942 (2006).
9. C. Cen, S. Thiel, G. Hammerl, C. W. Schneider, K. E. Andersen, C. S. Hellberg, J. Mannhart, and J. Levy, Nat Mater 7, 298 (2008).
10. K. Takayanagi, Y. Tanishiro, M. Takahashi, and S. Takahashi, J. Vac. Sci. Technol.A 3, 1502 (1985).
11. K. Takayanagi, Y. Tanishiro, M. Takahashi, and S. Takahashi, Surf. Sci. 164, 367 (1985).
12. T. Tanikawa, K. Yoo, I. Matsuda, S. Hasegawa, and Y. Hasegawa, Phys. Rev. B 68, 113303 (2003).
13. J. Mysliveˇcek, A. Strozecka, J. Steffl, P. Sobotik, I. Ostadal, and B. Voigtlander, Phys. Rev. B 73, 161302(R) (2006).
14. R. M. Feenstra, S. Gaan, G. Meyer, and K. H. Rieder, Phys. Rev. B 71, 125316 (2005).
15. R. Schillinger, C. Bromberger, H. J. J¨ansch, H. Kleine, O. K¨uhlert, C. Weindel, and D. Fick, Phys. Rev. B 72, 115314 (2005).
16. N. D. Lang, Phys. Rev. B 37, 10395 (1988).
17. L. Olesen, M. Brandbyge, M. R. Sorensen, K. W. Jacobsen, E. Laegsgaard, I. Stensgaard, and F. Besenbacher, Phys. Rev. Lett. 76, 1485 (1996).
18. W. A. Hofer, A. J. Fisher, R. A. Wolkow, and P. Gr¨utter, Phys. Rev. Lett. 87, 236104 (2001).
19. Y. Sun, H. Mortensen, S. Sch¨ar, A. S. Lucier, Y. Miyahara, P. Gr¨utter, and W. Hofer, Phys. Rev. B 71, 193407 (2005).
20. R. Young, J. Ward, and F. Scire, Rev. Sci. Instrum. 43, 999-1011. (1972).
21. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Appl. Phys. Lett. 40, 178-180. (1982).
22. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Physica 109-110B+C, 2075-2077. (1982).
23. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).
24. J. Curie, and P. Curie, Comptes Rendus 91, 383 (1880).
25. R. E. Schlier and H. E. Farnsworth, J. Chem. Phys. 30, 917(1959).
26. G. Binnig, H. Rohrer, Ch. Gerber, and E.Weibel, Phys. Rev. Lett. 50, 120 (1983).
27. Landolt-Bornstein, p. 370, Numerical Data and Functional Relationships in Science and Technology, Vol. 17a, edited by O. Madelung, M. Schultz, and H. Weiss, Springer, Berlin 1982.
28. S.H. Pan, E.W. Hudson and J.C. Davis, Rev. Sci. Instum. 70, 1459 (1999).
29. M.D Pashley, K. W. Haberern, and W. Friday, J. Vac. Sci. Technol. A 6, 488 (1998).
30. Lan Chen et al., Phys. Rev. B 75, 085329 (2007).
31. J. P. Plez, Phys. Rev. B 43, 6746 (1990).
32. R. M. Tromp, E. J. van Loenen, J. E. Demuth, and N. D. Lang, Phys. Rev. B 37, 9042 (1988).
33. I. W. Lyo and Ph. Avouris, Science 245, 1369 (1989).
34. T. Klitsner, R. S. Becker, and J. S. Vickers, Phys. Rev. B 41, 3837 (1990).
35. R. M. Feenstra, G. Meyer, F. Moresco, and K. H. Rieder, Phys. Rev. B 64, 081306(R) (2001).
36. R. M. Feenstra, G. Meyer, and K. H. Rieder, Phys. Rev. B 69, 081309(R) (2004).
37. R. M. Feenstra, J. A. Stroscio, and A. P. Fein, Surface Sci. 181, 295 (1987).
38. R. J. hamers, R. M. Tromp, and J. E. Demuth, Phys. Rev. Lett. 56, 1972 (1986).
39. J. A. Stroscio, R. M. Feenstra, and A. P. Fein, Phys. Rev. Lett. 58, 1668 (1987).
40. P. Martensson, and R. M. Feenstra, Phys. Rev. B 39, 7744 (1988).
41. R. M. Feenstra, Phys. Rev. B 50, 4561 (1994).
42. G. Hollinger and F. Himpsel, J. Vac. Sci. Technol.A 1, 640 (1983).
43. S. Kurokawa, M. Yuasa, A. Sakai, and Y. Hasegawa, Jpn. J. Appl. Phys. 36, 3860 (1997).
44. W. A. Hofer, A. J. Fisher, R. A. Wolkow, and P. Gr¨utter, Phys. Rev. Lett. 87, 236104 (2001).
45. B. C. Stipe, M. A. Rezaei, and W. Ho, Phys. Rev. Lett. 79, 4397 (1997).
46. W. A. Hofer and A. J. Fisher, Phys. Rev. Lett. 91, 036803 (2003).
47. J. Tersoff, and D. R. Hamann, Phys. Rev. B. 31, 805 (1985).
48. J. Bardeen, Phys. Rev. Lett. 6, 57 (1961).
49. G. Hollinger and F. J. Himpsel, J. Vac. Sci. Technol.A 1, 640 (1983).
50. F. J. Himpsel, G. Hollinger, and R. A. Pollak, Phys. Rev. Lett. 28, 7014 (1983).
51. K. D. Brommer, M. Needels, B. E. Larson, and J. D. Joannoupoulos, Phys. Rev. Lett. 68, 1355 (1992).
52. Franz J. Giessibl, S. Hembacher, H. Bielefeldt, and J. Mannhart, SCIENCE 289, 422 (2000).