研究生: |
沛維翠 Sriram, Pavithra |
---|---|
論文名稱: |
將剛硬與可撓式電漿子元件與二維二硫化過渡金屬整合並探討其於能源及光電方面之應用 Hybridizing Rigid and Flexible Plasmonic Devices with 2D- Transition Metal Dichalcogenides for Energy and Opto-Electronic Applications |
指導教授: |
嚴大任
Yen, Ta-Jen |
口試委員: |
張煥宗
Chang, Huan-Tsung 施閔雄 Shih, Min-Hsiung 闕郁倫 Chueh, Yu-Lun 莊豐權 Chuang, Feng-Chuan |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 103 |
中文關鍵詞: | 等离子体 、二维二硫化物过渡金属 、能源 、光电 |
外文關鍵詞: | Plasmonics, 2D Transition Metal Dichalcogenides, Energy, Optoelectronic |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電漿子光學因其能有效的限制光於次波長空間內而成為一個相當吸引人的領域。在眾多可以激發電漿子的結構中,奈米天線由於其外形可以被設計來控制它們的主要特性,以加強光與物質的交互作用而獲得眾多矚目。特別是二維過渡金屬二硫化物與光的反應。從表面電漿子的衰變來汲取熱電子並利用它們來增強二維過渡金屬二硫化物的光電性質已經被應用在許多技術中,例如:光電流,光致發光以及光催化。而這些過渡金屬硫化物中,二硫化鉬薄膜被視為相當有潛力應用於光感測器及光催化的材料,因為其直接能隙所衍生出有趣的電子,光子及自旋子的特性。然而,單分子層二氧化鉬的低吸收率限制了其與光的交互作用且導致了低的量子產率。為了提升單分子層或數分子層二氧化鉬的量子產率,我們透過耦合二氧化鉬薄膜的激發子及奈米結構金屬上的熱電漿子來提升量子產率。另外,一種有趣的控調控方法是藉由局域性地施加應力於二氧化鉬薄膜來改變其能帶結構。
在這篇論文中,我們深入研究三種不同的方法來整合奈米電漿子結構與幾個分子層的二氧化鉬並應用於高效的光催化產氫反應與增強的光偵測器。在我們的第一個研究題目中,我們設計奈米天線使其具有四極間隙電漿子共振模態,並藉由數值分析,進一步將共振模態的電磁場增強最大化。接著,我們以化學氣相反應將雙層二氧化鉬沉積於優化過後的奈米天線以調控並增強二氧化鉬的光學響應。優化後的四極間隙電漿子結構的電磁場增強27.87倍,而連續的雙分子層二氧化鉬可被應用於產氫反應並有著優異的結果。在第二個題目中,我們用不同型態的電漿子奈米粒子置於雙層二氧化鉬上並展示其增強的光偵測。這個方法不只省去了將二氧化鉬薄膜轉移的困難步驟,還能藉著這些電漿子奈米顆粒所造成的應變,來改變二氧化鉬的能帶結構。此外,我們的研究也顯示了隨著熱電子的注入及應變的導入,二氧化鉬的激發子及適當導向的金奈米結構的電漿子模態之間的有效耦合對於增加二氧化鉬的光電流扮演著重要的角色。結果顯示,以奈米電漿子結構導入的應變其光響應值較熱應力還高出32倍。最後,在第三個題目中,我們藉由可撓性基板來導入應力,在這個情況下,應力被施加於以微影法製成的奈米金圓盤以及附著於其上的二氧化鉬。我們施以單軸以及雙軸的應力來調控其能帶結構並有效的汲取熱電子。在不久的將來,這個研究對於可撓性的電漿子裝置與二維過渡金屬硫化物將會有顯著的影響。
簡而言之,在這篇論文裡,我們投身於三種不同的電漿子裝置與二氧化鉬薄膜整合並應用於產氫反應及光偵測器。其中包含了:
1.整合雙分子層二氧化鉬與優化的四極間隙電漿子奈米天線達成高效光催化產氫反應。
2.以電漿子微結構造成的局域性應變強化二氧化鉬薄膜的光偵測性能。
3.以可撓性基板調控雙分子層二氧化鉬之能帶結構。
這些整合裝置驗證了二維過渡金屬二硫化物與電漿子結構整合的獨特性值,更甚者,將會對於有限的能源帶來巨大的影響。
Plasmonics becomes a fascinating field, due to their ability to confine and trap light in deep subwavelength volumes. Among various plasmonic structures, plasmonic nanoantennas have attracted increasing attention because their configurations can be engineered to govern their predominant properties for intensifying the light-matter interaction, particularly on extremely thin matter such as 2D transition metal dichalcogenides (TMDs). Extracting hot electrons from surface plasmon decay and utilizing them to enhance the optoelectronic properties of 2D - TMDs have been harnessed in numerous techniques including such as photocurrents, photoluminescence, and photocatalysis. Due to their direct-band-gap nature and intriguing electronic, optical and spintronic properties, 2D molybdenum disulfide (MoS2) nanosheets became a promising material for photocatalysis and photodetectors. However, the low optical cross-section of monolayer MoS2 is a bottleneck for light-matter interaction and leads to low quantum yield (QY). To improve the QY of few-layered MoS2, plasmonic structures shed light by explicitly coupling the excitons of TMDs and the hot plasmons of noble metal nanostructures. On the other hand, Controlling the band structure through local strain engineering is an exciting avenue for tailoring optoelectronic properties of MoS2 at the nanoscale.
In this dissertation, we delve into three different methods to integrate the plasmonic nanostructures with few layered MoS2 and engaging these hybrid materials for efficient photocatalyst for hydrogen evolution and the enhanced photodetector. In our first research topic, we introduce unusual quadrupole gap plasmons (QGPs) in the tailored nanoantennas. We further maximize the field enhancement of such QGPs by optimizing the structure of the nanoantennas using a statistical method. In addition, the optimized nanoantennas were employed on a chemical vapor reaction (CVR)-grown bilayer molybdenum disulfide (MoS2) to tune and intensify the optical response of MoS2. The optimized QGP structure performance enhanced by a factor of 27.87 and beneficial continuous bilayer MoS2 can be applied in the hydrogen evolution reaction (HER) with superior outcomes. Next, in the second project, we demonstrate the augmented photodetection of CVR- grown large surface bilayer MoS2 by decorating it with different morphology-controlled plasmonic nanoparticles. This approach sheds light on the bandgap engineering of the bilayer MoS2 through plasmonic mediated strain with the advantageous transfer-free process. Moreover, our investigation shows that along with hot electron injection and strain inclusion, the effective coupling between the excitons of MoS2 and the properly directed plasmonic mode of the Au nanostructures plays the vital role in enhancing the photocurrent of MoS2. As a result, the plasmonically strained bilayer MoS2 shows 32-fold-higher photoresponsivity than the thermally strained bilayer MoS2. Consequently, in the third project, we introduce the strain in MoS2 using flexible plasmonic devices with the various percentage. In this case, the strain is applied to both lithographically patterned Au nanodisk and MoS2 adhesive to Au nanodisk. We apply both uniaxial and biaxial strain to modify the band structure of MoS2 along with efficient hot electron injection. This work will have more significance in flexible plasmonic integrated TMDs devices in near future.
To summarize, in this dissertation, we devote ourselves to three different plasmonic integrated MoS2 devices for HER and photodetector including 1. Hybridized bilayer MoS2 with optimized quadrupole gap plasmonic nanoantenna as an efficient photocatalyst for HER; 2. Invigorating photodetection of MoS2 via plasmonic strain engineering; 3. Flexible plasmonic device for band structure modification for bilayer MoS2. Such hybrid devices validate the exotic properties of plasmonic integrated TMDs and would have a huge impact on the field of increasing energy conversion.
1. Ritchie, R., Plasma losses by fast electrons in thin films. Physical Review 1957, 106 (5), 874.
2. Powell, C.; Swan, J., Effect of oxidation on the characteristic loss spectra of aluminum and magnesium. Physical Review 1960, 118 (3), 640.
3. Stockman, M. I., Nanoplasmonics: past, present, and glimpse into future. Optics express 2011, 19 (22), 22029-22106.
4. Yang, A.; Wang, D.; Wang, W.; Odom, T. W., Coherent light sources at the nanoscale. Annual review of physical chemistry 2017, 68, 83-99.
5. Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997, 78 (9), 1667.
6. Atwater, H. A.; Polman, A., Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9 (3), 205-213.
7. Lapotko, D., Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications. Nanomedicine 2009, 4 (7), 813-845.
8. Linic, S.; Christopher, P.; Ingram, D. B., Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10 (12), 911-921.
9. Zhang, J.; Peng, Z.; Soni, A.; Zhao, Y.; Xiong, Y.; Peng, B.; Wang, J.; Dresselhaus, M. S.; Xiong, Q., Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. Nano letters 2011, 11 (6), 2407-2414.
10. Keum, D. H.; Cho, S.; Kim, J. H.; Choe, D.-H.; Sung, H.-J.; Kan, M.; Kang, H.; Hwang, J.-Y.; Kim, S. W.; Yang, H., Bandgap opening in few-layered monoclinic MoTe 2. Nature Physics 2015, 11 (6), 482.
11. Ali, M., MN Ali, J. Xiong, S. Flynn, J. Tao, QD Gibson, LM Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, NP Ong, and RJ Cava, Nature (London) 514, 205 (2014). Nature (London) 2014, 514, 205.
12. Choi, W.; Choudhary, N.; Han, G. H.; Park, J.; Akinwande, D.; Lee, Y. H., Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today 2017, 20 (3), 116-130.
13. Zou, X.; Zhang, Y., Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews 2015, 44 (15), 5148-5180.
14. Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G., Solar energy supply and storage for the legacy and nonlegacy worlds. Chemical reviews 2010, 110 (11), 6474-6502.
15. Fernández-García, R.; Sonnefraud, Y.; Fernández-Domínguez, A. I.; Giannini, V.; Maier, S. A., Design considerations for near-field enhancement in optical antennas. Contemp. Phys. 2014, 55 (1), 1-11.
16. Merlein, J.; Kahl, M.; Zuschlag, A.; Sell, A.; Halm, A.; Boneberg, J.; Leiderer, P.; Leitenstorfer, A.; Bratschitsch, R., Nanomechanical control of an optical antenna. Nat. Photonics 2008, 2 (4), 230-233.
17. Brown, L. V.; Yang, X.; Zhao, K.; Zheng, B. Y.; Nordlander, P.; Halas, N. J., Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA). Nano Lett. 2015, 15 (2), 1272-1280.
18. Crozier, K.; Sundaramurthy, A.; Kino, G.; Quate, C., Optical antennas: Resonators for local field enhancement. J. Appl. Phys. 2003, 94 (7), 4632-4642.
19. Park, Q.-H., Optical antennas and plasmonics. Contemp. Phys. 2009, 50 (2), 407-423.
20. Crozier, K.; Sundaramurthy, A.; Kino, G.; Quate, C., Optical antennas: Resonators for local field enhancement. Journal of Applied Physics 2003, 94 (7), 4632-4642.
21. Schuck, P.; Fromm, D.; Sundaramurthy, A.; Kino, G.; Moerner, W., Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Physical review letters 2005, 94 (1), 017402.
22. Schuller, J. A.; Taubner, T.; Brongersma, M. L., Optical antenna thermal emitters. Nature Photonics 2009, 3 (11), 658.
23. Park, Q.-H., Optical antennas and plasmonics. Contemporary physics 2009, 50 (2), 407-423.
24. Giannini, V.; Fernández-Domínguez, A. I.; Heck, S. C.; Maier, S. A., Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chemical reviews 2011, 111 (6), 3888-3912.
25. Biagioni, P.; Huang, J.-S.; Hecht, B., Nanoantennas for visible and infrared radiation. Reports on Progress in Physics 2012, 75 (2), 024402.
26. Giannini, V.; Fernández‐Domínguez, A. I.; Sonnefraud, Y.; Roschuk, T.; Fernández‐García, R.; Maier, S. A., Controlling light localization and light–matter interactions with nanoplasmonics. small 2010, 6 (22), 2498-2507.
27. Bharadwaj, P.; Deutsch, B.; Novotny, L., Optical antennas. Advances in Optics and Photonics 2009, 1 (3), 438-483.
28. Novotny, L.; Van Hulst, N., Antennas for light. Nature photonics 2011, 5 (2), 83.
29. Schuller, J. A.; Barnard, E. S.; Cai, W.; Jun, Y. C.; White, J. S.; Brongersma, M. L., Plasmonics for extreme light concentration and manipulation. Nature materials 2010, 9 (3), 193.
30. van Zanten, T. S.; Lopez‐Bosque, M. J.; Garcia‐Parajo, M. F., Imaging Individual Proteins and Nanodomains on Intact Cell Membranes with a Probe‐Based Optical Antenna. Small 2010, 6 (2), 270-275.
31. Hägglund, C.; Zäch, M.; Kasemo, B., Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons. Applied Physics Letters 2008, 92 (1), 013113.
32. Moreno, F.; Albella, P.; Nieto-Vesperinas, M., Analysis of the spectral behavior of localized plasmon resonances in the near-and far-field regimes. Langmuir 2013, 29 (22), 6715-6721.
33. Ross, B. M.; Lee, L. P., Comparison of near-and far-field measures for plasmon resonance of metallic nanoparticles. Optics letters 2009, 34 (7), 896-898.
34. Zuloaga, J.; Nordlander, P., On the energy shift between near-field and far-field peak intensities in localized plasmon systems. Nano letters 2011, 11 (3), 1280-1283.
35. Alonso-González, P.; Albella, P.; Neubrech, F.; Huck, C.; Chen, J.; Golmar, F.; Casanova, F.; Hueso, L. E.; Pucci, A.; Aizpurua, J., Experimental verification of the spectral shift between near-and far-field peak intensities of plasmonic infrared nanoantennas. Physical review letters 2013, 110 (20), 203902.
36. Fernández-García, R.; Sonnefraud, Y.; Fernández-Domínguez, A. I.; Giannini, V.; Maier, S. A., Design considerations for near-field enhancement in optical antennas. Contemporary Physics 2014, 55 (1), 1-11.
37. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology 2012, 7 (11), 699.
38. Dai, J.; Zeng, X. C., Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells. The journal of physical chemistry letters 2014, 5 (7), 1289-1293.
39. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, i. V.; Kis, A., Single-layer MoS 2 transistors. Nature nanotechnology 2011, 6 (3), 147.
40. Yan, J.; Kim, M. H.; Elle, J. A.; Sushkov, A. B.; Jenkins, G. S.; Milchberg, H. M.; Fuhrer, M. S.; Drew, H., Dual-gated bilayer graphene hot-electron bolometer. Nature nanotechnology 2012, 7 (7), 472.
41. Vicarelli, L.; Vitiello, M.; Coquillat, D.; Lombardo, A.; Ferrari, A.; Knap, W.; Polini, M.; Pellegrini, V.; Tredicucci, A., Graphene field-effect transistors as room-temperature terahertz detectors. Nature materials 2012, 11 (10), 865.
42. Pospischil, A.; Humer, M.; Furchi, M. M.; Bachmann, D.; Guider, R.; Fromherz, T.; Mueller, T., CMOS-compatible graphene photodetector covering all optical communication bands. Nature Photonics 2013, 7 (11), 892.
43. Mueller, T.; Xia, F.; Avouris, P., Graphene photodetectors for high-speed optical communications. Nature photonics 2010, 4 (5), 297.
44. Baugher, B. W.; Churchill, H. O.; Yang, Y.; Jarillo-Herrero, P., Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nature nanotechnology 2014, 9 (4), 262.
45. Pospischil, A.; Furchi, M. M.; Mueller, T., Solar-energy conversion and light emission in an atomic monolayer pn diode. Nature nanotechnology 2014, 9 (4), 257-261.
46. Perea‐López, N.; Elías, A. L.; Berkdemir, A.; Castro‐Beltran, A.; Gutiérrez, H. R.; Feng, S.; Lv, R.; Hayashi, T.; López‐Urías, F.; Ghosh, S., Photosensor device based on few‐layered WS2 films. Advanced Functional Materials 2013, 23 (44), 5511-5517.
47. Buscema, M.; Barkelid, M.; Zwiller, V.; van der Zant, H. S.; Steele, G. A.; Castellanos-Gomez, A., Large and tunable photothermoelectric effect in single-layer MoS2. Nano letters 2013, 13 (2), 358-363.
48. Fontana, M.; Deppe, T.; Boyd, A. K.; Rinzan, M.; Liu, A. Y.; Paranjape, M.; Barbara, P., Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Scientific reports 2013, 3, 1634.
49. Wu, C.-C.; Jariwala, D.; Sangwan, V. K.; Marks, T. J.; Hersam, M. C.; Lauhon, L. J., Elucidating the photoresponse of ultrathin MoS2 field-effect transistors by scanning photocurrent microscopy. The Journal of Physical Chemistry Letters 2013, 4 (15), 2508-2513.
50. Lin, J.; Li, H.; Zhang, H.; Chen, W., Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor. Applied Physics Letters 2013, 102 (20), 203109.
51. Abdi, Y.; Abe, K.; Abelein, U.; Aberg, I.; Abrokwah, J.; Absil, P.; Absil, P.; Adelmann, C.; Adivarahan, V.; Agarwal, A., 2007 Index IEEE Electron Device Letters Vol. 28. IEEE Electron Device Letters 2007, 28 (12), 1145.
52. Tsai, D.-S.; Liu, K.-K.; Lien, D.-H.; Tsai, M.-L.; Kang, C.-F.; Lin, C.-A.; Li, L.-J.; He, J.-H., Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. Acs Nano 2013, 7 (5), 3905-3911.
53. Zhang, W.; Huang, J. K.; Chen, C. H.; Chang, Y. H.; Cheng, Y. J.; Li, L. J., High‐gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater. 2013, 25 (25), 3456-3461.
54. Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A., Ultrasensitive photodetectors based on monolayer MoS 2. Nat. Nanotechnol. 2013, 8 (7), 497.
55. Lee, H. S.; Min, S.-W.; Chang, Y.-G.; Park, M. K.; Nam, T.; Kim, H.; Kim, J. H.; Ryu, S.; Im, S., MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 2012, 12 (7), 3695-3700.
56. Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V.; Grigorenko, A. N.; Geim, A. K.; Casiraghi, C.; Castro Neto, A. H.; Novoselov, K. S., Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340 (6138), 1311-4.
57. Jacobs-Gedrim, R. B.; Shanmugam, M.; Jain, N.; Durcan, C. A.; Murphy, M. T.; Murray, T. M.; Matyi, R. J.; Moore, R. L.; Yu, B., Extraordinary photoresponse in two-dimensional In2Se3 nanosheets. ACS nano 2013, 8 (1), 514-521.
58. Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H., Single-layer MoS2 phototransistors. ACS Nano 2012, 6 (1), 74-80.
59. Choi, W.; Cho, M. Y.; Konar, A.; Lee, J. H.; Cha, G. B.; Hong, S. C.; Kim, S.; Kim, J.; Jena, D.; Joo, J., High‐detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 2012, 24 (43), 5832-5836.
60. Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K., Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. Journal of the American Chemical Society 2005, 127 (15), 5308-5309.
61. Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I., Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. science 2007, 317 (5834), 100-102.
62. Ganatra, R.; Zhang, Q., Few-layer MoS2: a promising layered semiconductor. ACS nano 2014, 8 (5), 4074-4099.
63. Koppens, F.; Mueller, T.; Avouris, P.; Ferrari, A.; Vitiello, M.; Polini, M., Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature nanotechnology 2014, 9 (10), 780.
64. Buscema, M.; Island, J. O.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S.; Castellanos-Gomez, A., Photocurrent generation with two-dimensional van der Waals semiconductors. Chemical Society Reviews 2015, 44 (11), 3691-3718.
65. Lee, H. S.; Min, S.-W.; Chang, Y.-G.; Park, M. K.; Nam, T.; Kim, H.; Kim, J. H.; Ryu, S.; Im, S., MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano letters 2012, 12 (7), 3695-3700.
66. Abderrahmane, A.; Ko, P.; Thu, T.; Ishizawa, S.; Takamura, T.; Sandhu, A., High photosensitivity few-layered MoSe2 back-gated field-effect phototransistors. Nanotechnology 2014, 25 (36), 365202.
67. Zhang, W.; Chiu, M.-H.; Chen, C.-H.; Chen, W.; Li, L.-J.; Wee, A. T. S., Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS nano 2014, 8 (8), 8653-8661.
68. Chang, Y.-H.; Zhang, W.; Zhu, Y.; Han, Y.; Pu, J.; Chang, J.-K.; Hsu, W.-T.; Huang, J.-K.; Hsu, C.-L.; Chiu, M.-H., Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS nano 2014, 8 (8), 8582-8590.
69. Furchi, M. M.; Polyushkin, D. K.; Pospischil, A.; Mueller, T., Mechanisms of photoconductivity in atomically thin MoS2. Nano letters 2014, 14 (11), 6165-6170.
70. Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H., Single-layer MoS2 phototransistors. ACS nano 2011, 6 (1), 74-80.
71. Choi, W.; Cho, M. Y.; Konar, A.; Lee, J. H.; Cha, G. B.; Hong, S. C.; Kim, S.; Kim, J.; Jena, D.; Joo, J., High‐detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Advanced materials 2012, 24 (43), 5832-5836.
72. Kwon, J.; Hong, Y. K.; Han, G.; Omkaram, I.; Choi, W.; Kim, S.; Yoon, Y., Giant Photoamplification in Indirect‐Bandgap Multilayer MoS2 Phototransistors with Local Bottom‐Gate Structures. Advanced Materials 2015, 27 (13), 2224-2230.
73. Zhang, W.; Huang, J. K.; Chen, C. H.; Chang, Y. H.; Cheng, Y. J.; Li, L. J., High‐gain phototransistors based on a CVD MoS2 monolayer. Advanced materials 2013, 25 (25), 3456-3461.
74. Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A., Ultrasensitive photodetectors based on monolayer MoS 2. Nature nanotechnology 2013, 8 (7), 497.
75. Li, Z.; Xiao, Y.; Gong, Y.; Wang, Z.; Kang, Y.; Zu, S.; Ajayan, P. M.; Nordlander, P.; Fang, Z., Active light control of the MoS2 monolayer exciton binding energy. ACS Nano 2015, 9 (10), 10158-10164.
76. Li, X.; Zhu, J.; Wei, B., Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chem. Soc. Rev. 2016, 45 (11), 3145-3187.
77. Li, X.; Zhu, J.; Wei, B., Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chemical Society Reviews 2016, 45 (11), 3145-3187.
78. Wang, W.; Klots, A.; Prasai, D.; Yang, Y.; Bolotin, K. I.; Valentine, J., Hot electron-based near-infrared photodetection using bilayer MoS2. Nano letters 2015, 15 (11), 7440-7444.
79. Gao, W.; Lee, Y. H.; Jiang, R.; Wang, J.; Liu, T.; Ling, X. Y., Localized and continuous tuning of monolayer MoS2 photoluminescence using a single shape‐controlled ag nanoantenna. Adv. Mater. 2016, 28 (4), 701-706.
80. Butun, S.; Tongay, S.; Aydin, K., Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays. Nano Lett. 2015, 15 (4), 2700-2704.
81. Najmaei, S.; Mlayah, A.; Arbouet, A.; Girard, C.; Léotin, J.; Lou, J., Plasmonic pumping of excitonic photoluminescence in hybrid MoS2–Au nanostructures. ACS nano 2014, 8 (12), 12682-12689.
82. Bahauddin, S. M.; Robatjazi, H.; Thomann, I., Broadband absorption engineering to enhance light absorption in monolayer MoS2. ACS Photonics 2016, 3 (5), 853-862.
83. Li, Y.; Cain, J. D.; Hanson, E. D.; Murthy, A. A.; Hao, S.; Shi, F.; Li, Q.; Wolverton, C.; Chen, X.; Dravid, V. P., Au@ MoS2 Core–Shell Heterostructures with Strong Light–Matter Interactions. Nano Lett. 2016, 16 (12), 7696-7702.
84. Shi, Y.; Wang, J.; Wang, C.; Zhai, T. T.; Bao, W. J.; Xu, J. J.; Xia, X. H.; Chen, H. Y., Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137 (23), 7365-70.
85. Kim, J.; Byun, S.; Smith, A. J.; Yu, J.; Huang, J., Enhanced electrocatalytic properties of transition-metal dichalcogenides sheets by spontaneous gold nanoparticle decoration. J. Phys. Chem. Lett. 2013, 4 (8), 1227-1232.
86. Shi, Y.; Wang, J.; Wang, C.; Zhai, T.-T.; Bao, W.-J.; Xu, J.-J.; Xia, X.-H.; Chen, H.-Y., Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137 (23), 7365-7370.
87. Li, X.; Zhang, L.; Zang, X.; Li, X.; Zhu, H., Photo-promoted platinum nanoparticles decorated MoS2@ graphene woven fabric catalyst for efficient hydrogen generation. ACS Appl. Mater. Interfaces 2016, 8 (17), 10866-10873.
88. Lee, B.; Park, J.; Han, G. H.; Ee, H.-S.; Naylor, C. H.; Liu, W.; Johnson, A. C.; Agarwal, R., Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array. Nano Lett. 2015, 15 (5), 3646-3653.
89. Li, J.; Ji, Q.; Chu, S.; Zhang, Y.; Li, Y.; Gong, Q.; Liu, K.; Shi, K., Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna. Sci. Rep. 2016, 6, 23626.
90. Jeong, H. Y.; Kim, U. J.; Kim, H.; Han, G. H.; Lee, H.; Kim, M. S.; Jin, Y.; Ly, T. H.; Lee, S. Y.; Roh, Y.-G., Optical Gain in MoS2 via Coupling with Nanostructured Substrate: Fabry–Perot Interference and Plasmonic Excitation. ACS Nano 2016, 10 (9), 8192-8198.
91. Cheng, F.; Johnson, A. D.; Tsai, Y.; Su, P.-H.; Hu, S.; Ekerdt, J. G.; Shih, C.-K., Enhanced Photoluminescence of Monolayer WS2 on Ag Films and Nanowire− WS2− Film Composites. ACS Photonics 2017, 4 (6), 1421-30.
92. Chen, M.; Shao, L.; Kershaw, S. V.; Yu, H.; Wang, J.; Rogach, A. L.; Zhao, N., Photocurrent enhancement of HgTe quantum dot photodiodes by plasmonic gold nanorod structures. ACS Nano 2014, 8 (8), 8208-16.
93. Tame, M. S.; McEnery, K.; Özdemir, Ş.; Lee, J.; Maier, S.; Kim, M., Quantum plasmonics. Nat. Phys. 2013, 9 (6), 329.
94. Ghatak, S.; Pal, A. N.; Ghosh, A., Nature of electronic states in atomically thin MoS2 field-effect transistors. Acs Nano 2011, 5 (10), 7707-7712.
95. Yan, J.; Ma, C.; Liu, P.; Yang, G., Plasmon-Induced Energy Transfer and Photoluminescence Manipulation in MoS2 with a Different Number of Layers. ACS Photonics 2017, 4 (5), 1092-1100.
96. Yee, K., Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on antennas and propagation 1966, 14 (3), 302-307.
97. Umashankar, K.; Taflove, A., A novel method to analyze electromagnetic scattering of complex objects. IEEE transactions on electromagnetic compatibility 1982, (4), 397-405.
98. Kresse, G.; Hafner, J., Ab initio molecular dynamics for liquid metals. Phys. Rev. B. Condens. Matter 1993, 47 (1), 558-561.
99. Kresse, G., G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994). Phys. Rev. B. Condens. Matter 1994, 49, 14251.
100.Kresse, G., G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). Comput. Mater. Sci. 1996, 6, 15.
101.Kresse, G., G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). Phys. Rev. B. Condens. Matter 1996, 54, 11169.
102.Blöchl, P., PE Blöchl, Phys. Rev. B 50, 17953 (1994). Phys. Rev. B. Condens. Matter 1994, 50, 17953.
103.Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77 (18), 3865.
104.Monkhorst, H. J.; Pack, J. D., Special points for Brillouin-zone integrations. Phys. Rev. B. 1976, 13 (12), 5188.
105.Blochl, P. E.; Jepsen, O.; Andersen, O. K., Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B. Condens. Matter 1994, 49 (23), 16223-16233.
106.Chang, C.-C.; Wu, H.-L.; Kuo, C.-H.; Huang, M. H., Hydrothermal synthesis of monodispersed octahedral gold nanocrystals with five different size ranges and their self-assembled structures. Chem. Mater. 2008, 20 (24), 7570-7574.
107.Wu, H. L.; Kuo, C. H.; Huang, M. H., Seed-mediated synthesis of gold nanocrystals with systematic shape evolution from cubic to trisoctahedral and rhombic dodecahedral structures. Langmuir 2010, 26 (14), 12307-13.
108.Sau, T. K.; Murphy, C. J., Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 2004, 20 (15), 6414-20.
109.Gramotnev, D. K.; Pors, A.; Willatzen, M.; Bozhevolnyi, S. I., Gap-plasmon nanoantennas and bowtie resonators. Phys. Rev. B 2012, 85 (4), 045434.
110.Knight, M. W.; Liu, L.; Wang, Y.; Brown, L.; Mukherjee, S.; King, N. S.; Everitt, H. O.; Nordlander, P.; Halas, N. J., Aluminum plasmonic nanoantennas. Nano Lett. 2012, 12 (11), 6000-6004.
111.Tao, J.; Chai, J.; Lu, X.; Wong, L. M.; Wong, T. I.; Pan, J.; Xiong, Q.; Chi, D.; Wang, S., Growth of wafer-scale MoS 2 monolayer by magnetron sputtering. Nanoscale 2015, 7 (6), 2497-2503.
112.Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X.; Shi, G.; Lei, S.; Yakobson, B. I.; Idrobo, J.-C.; Ajayan, P. M.; Lou, J., Vapor phase growth and grain boundary structure of molybdenum disulfide atomic layers. Nat. Mater. 2013, 12, 754-759.
113.Butun, S.; Tongay, S.; Aydin, K., Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays. Nano letters 2015, 15 (4), 2700-2704.
114.Gao, W.; Lee, Y. H.; Jiang, R.; Wang, J.; Liu, T.; Ling, X. Y., Localized and Continuous Tuning of Monolayer MoS2 Photoluminescence Using a Single Shape‐Controlled Ag Nanoantenna. Advanced Materials 2016, 28 (4), 701-706.
115.Lee, B.; Park, J.; Han, G. H.; Ee, H.-S.; Naylor, C. H.; Liu, W.; Johnson, A. C.; Agarwal, R., Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array. Nano letters 2015, 15 (5), 3646-3653.
116.Li, Y.; Cain, J. D.; Hanson, E. D.; Murthy, A. A.; Hao, S.; Shi, F.; Li, Q.; Wolverton, C.; Chen, X.; Dravid, V. P., Au@ MoS2 core–shell heterostructures with strong light–matter interactions. Nano letters 2016, 16 (12), 7696-7702.
117.Voiry, D.; Fullon, R.; Yang, J.; e Silva, C. d. C. C.; Kappera, R.; Bozkurt, I.; Kaplan, D.; Lagos, M. J.; Batson, P. E.; Gupta, G., The role of electronic coupling between substrate and 2D MoS 2 nanosheets in electrocatalytic production of hydrogen. Nature materials 2016, 15 (9), 1003.
118.Uosaki, K.; Elumalai, G.; Dinh, H. C.; Lyalin, A.; Taketsugu, T.; Noguchi, H., Highly efficient electrochemical hydrogen evolution reaction at insulating boron nitride nanosheet on inert gold substrate. Scientific reports 2016, 6, 32217.
119.Zheng, Y.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z., Advancing the Electrochemistry of the Hydrogen‐Evolution Reaction through Combining Experiment and Theory. Angewandte Chemie International Edition 2015, 54 (1), 52-65.
120.Yu, C.-H.; Su, P.; Chuang, C.-T., Impact of Random Variations on Cell Stability and Write-Ability of Low-Voltage SRAMs Using Monolayer and Bilayer Transition Metal Dichalcogenide (TMD) MOSFETs. IEEE Electron Device Letters 2016, 37 (7), 928-931.
121.Zhang, P.; Fujitsuka, M.; Majima, T., Hot electron-driven hydrogen evolution using anisotropic gold nanostructure assembled monolayer MoS 2. Nanoscale 2017, 9 (4), 1520-1526.
122.Xie, J.; Zhang, H.; Li, S.; Wang, R.; Sun, X.; Zhou, M.; Zhou, J.; Lou, X. W.; Xie, Y., Defect‐rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Advanced materials 2013, 25 (40), 5807-5813.
123.Kibsgaard, J.; Chen, Z.; Reinecke, B. N.; Jaramillo, T. F., Engineering the surface structure of MoS 2 to preferentially expose active edge sites for electrocatalysis. Nature materials 2012, 11 (11), 963.
124.Li, H.; Tsai, C.; Koh, A. L.; Cai, L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F., Activating and optimizing MoS 2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nature materials 2016, 15 (1), 48.
125.Awaludin, Z.; Safuan, M.; Okajima, T.; Ohsaka, T., Investigating the physical and electrochemical effects of cathodic polarization treatment on TaO x. Journal of Materials Chemistry A 2015, 3 (32), 16791-16800.
126.Shi, J.; Wang, X.; Zhang, S.; Xiao, L.; Huan, Y.; Gong, Y.; Zhang, Z.; Li, Y.; Zhou, X.; Hong, M., Two-dimensional metallic tantalum disulfide as a hydrogen evolution catalyst. Nature communications 2017, 8 (1), 958.
127.Jaramillo, T. F.; Bonde, J.; Zhang, J.; Ooi, B.-L.; Andersson, K.; Ulstrup, J.; Chorkendorff, I., Hydrogen evolution on supported incomplete cubane-type [Mo3S4] 4+ electrocatalysts. The Journal of Physical Chemistry C 2008, 112 (45), 17492-17498.
128.Benck, J. D.; Chen, Z.; Kuritzky, L. Y.; Forman, A. J.; Jaramillo, T. F., Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. Acs Catalysis 2012, 2 (9), 1916-1923.
129.Merki, D.; Fierro, S.; Vrubel, H.; Hu, X., Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chemical Science 2011, 2 (7), 1262-1267.
130.Chen, Z.; Cummins, D.; Reinecke, B. N.; Clark, E.; Sunkara, M. K.; Jaramillo, T. F., Core–shell MoO3–MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano letters 2011, 11 (10), 4168-4175.
131.Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H., MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. Journal of the American Chemical Society 2011, 133 (19), 7296-7299.
132.Kibsgaard, J.; Jaramillo, T. F.; Besenbacher, F., Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo 3 S 13] 2− clusters. Nature chemistry 2014, 6 (3), 248.
133.Shi, Y.; Wang, J.; Wang, C.; Zhai, T.-T.; Bao, W.-J.; Xu, J.-J.; Xia, X.-H.; Chen, H.-Y., Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. Journal of the American Chemical Society 2015, 137 (23), 7365-7370.
134.Xiong, X.; You, C.; Liu, Z.; Asiri, A. M.; Sun, X., Co-Doped CuO Nanoarray: An Efficient Oxygen Evolution Reaction Electrocatalyst with Enhanced Activity. ACS Sustainable Chemistry & Engineering 2018, 6 (3), 2883-2887.
135.Guo, B.; Yu, K.; Li, H.; Qi, R.; Zhang, Y.; Song, H.; Tang, Z.; Zhu, Z.; Chen, M., Coral-Shaped MoS2 Decorated with Graphene Quantum Dots Performing as a Highly Active Electrocatalyst for Hydrogen Evolution Reaction. ACS applied materials & interfaces 2017, 9 (4), 3653-3660.
136.Cheng, W.; Su, H.; Tang, F.; Che, W.; Huang, Y.; Zheng, X.; Yao, T.; Liu, J.; Hu, F.; Jiang, Y., Synergetic enhancement of plasmonic hot-electron injection in Au cluster-nanoparticle/C 3 N 4 for photocatalytic hydrogen evolution. Journal of Materials Chemistry A 2017, 5 (37), 19649-19655.
137.Pan, J.; Chen, J.; Zhao, D.; Huang, Q.; Khan, Q.; Liu, X.; Tao, Z.; Zhang, Z.; Lei, W., Surface plasmon-enhanced quantum dot light-emitting diodes by incorporating gold nanoparticles. Optics express 2016, 24 (2), A33-A43.
138.Lu, P.; Wu, X.; Guo, W.; Zeng, X. C., Strain-dependent electronic and magnetic properties of MoS 2 monolayer, bilayer, nanoribbons and nanotubes. Physical Chemistry Chemical Physics 2012, 14 (37), 13035-13040.
139.Peng, Z.; Liu, Y.; Zhao, Y.; Shu, W.; Chen, K.; Bao, Q.; Chen, W., Efficiency enhancement of TiO2 nanodendrite array electrodes in CuInS2 quantum dot sensitized solar cells. Electrochimica Acta 2013, 111, 755-761.
140.Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F., Atomically thin MoS(2): a new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105 (13), 136805.
141.Salehzadeh, O.; Tran, N.; Liu, X.; Shih, I.; Mi, Z., Exciton kinetics, quantum efficiency, and efficiency droop of monolayer MoS2 light-emitting devices. Nano Lett. 2014, 14 (7), 4125-4130.
142.Kumarasinghe, C. S.; Premaratne, M.; Bao, Q.; Agrawal, G. P., Theoretical analysis of hot electron dynamics in nanorods. Scientific reports 2015, 5, 12140.
143.Hao, S.; Yang, B.; Gao, Y., Controllable growth and electrostatic properties of Bernal stacked bilayer MoS2. J. Appl. Phys. 2016, 120 (12), 124310.
144.Park, S.; Kim, H.; Kim, M. S.; Han, G. H.; Kim, J., Dependence of Raman and absorption spectra of stacked bilayer MoS<sub>2</sub> on the stacking orientation. Opt. Express 2016, 24 (19), 21551-9.
145.Lu, P.; Wu, X.; Guo, W.; Zeng, X. C., Strain-dependent electronic and magnetic properties of MoS 2 monolayer, bilayer, nanoribbons and nanotubes. Phys. Chem. Chem. Phys. 2012, 14 (37), 13035-13040.
146.Wang, W.; Klots, A.; Prasai, D.; Yang, Y.; Bolotin, K. I.; Valentine, J., Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Lett. 2015, 15 (11), 7440-7444.
147.Kumar, R.; Sharma, A.; Kaur, M.; Husale, S., Pt‐Nanostrip‐enabled plasmonically enhanced broad spectral photodetection in bilayer MoS2. Adv. Opt. Mater. 2017, 5 (9).
148.Reserbat-Plantey, A.; Kalita, D.; Han, Z.; Ferlazzo, L.; Autier-Laurent, S.; Komatsu, K.; Li, C.; Weil, R.; Ralko, A.; Marty, L.; Gueron, S.; Bendiab, N.; Bouchiat, H.; Bouchiat, V., Strain superlattices and macroscale suspension of graphene induced by corrugated substrates. Nano Lett. 2014, 14 (9), 5044-51.
149.Vejpravova, J.; Pacakova, B.; Endres, J.; Mantlikova, A.; Verhagen, T.; Vales, V.; Frank, O.; Kalbac, M., Graphene wrinkling induced by monodisperse nanoparticles: facile control and quantification. Sci. Rep. 2015, 5, 15061.
150.Tomori, H.; Kanda, A.; Goto, H.; Ootuka, Y.; Tsukagoshi, K.; Moriyama, S.; Watanabe, E.; Tsuya, D., Introducing nonuniform strain to graphene using dielectric nanopillars. Appl. Phys. Express 2011, 4 (7), 075102.
151.Ghosh, P. N.; Maiti, C., Interlayer force and Davydov splitting in 2 H− Mo S 2. Phys. Rev. B. 1983, 28 (4), 2237.
152.Bhattacharyya, S.; Pandey, T.; Singh, A. K., Effect of strain on electronic and thermoelectric properties of few layers to bulk MoS2. Nanotechnology 2014, 25 (46), 465701.
153.Desai, S. B.; Seol, G.; Kang, J. S.; Fang, H.; Battaglia, C.; Kapadia, R.; Ager, J. W.; Guo, J.; Javey, A., Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 2014, 14 (8), 4592-7.
154.Yang, L.; Cui, X.; Zhang, J.; Wang, K.; Shen, M.; Zeng, S.; Dayeh, S. A.; Feng, L.; Xiang, B., Lattice strain effects on the optical properties of MoS 2 nanosheets. Sci. Rep. 2014, 4, 5649.
155.Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F., Jr.; Pantelides, S. T.; Bolotin, K. I., Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13 (8), 3626-30.
156.Hui, Y. Y.; Liu, X.; Jie, W.; Chan, N. Y.; Hao, J.; Hsu, Y. T.; Li, L. J.; Guo, W.; Lau, S. P., Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 2013, 7 (8), 7126-31.
157.Su, G.; Hadjiev, V. G.; Loya, P. E.; Zhang, J.; Lei, S.; Maharjan, S.; Dong, P.; P, M. A.; Lou, J.; Peng, H., Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. Nano Lett. 2015, 15 (1), 506-13.
158.Wang, S.-W.; Medina, H.; Hong, K.-B.; Wu, C.-C.; Qu, Y.; Manikandan, A.; Su, T.-Y.; Lee, P.-T.; Huang, Z.-Q.; Wang, Z., Thermally Strained Band Gap Engineering of Transition-Metal Dichalcogenide Bilayers with Enhanced Light–Matter Interaction toward Excellent Photodetectors. ACS nano 2017, 11 (9), 8768-8776.
159.Bao, Q.; Loh, K. P., Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 2012, 6 (5), 3677-94.
160.Hu, P.; Wen, Z.; Wang, L.; Tan, P.; Xiao, K., Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 2012, 6 (7), 5988-94.
161.Ulaganathan, R. K.; Lu, Y. Y.; Kuo, C. J.; Tamalampudi, S. R.; Sankar, R.; Boopathi, K. M.; Anand, A.; Yadav, K.; Mathew, R. J.; Liu, C. R.; Chou, F. C.; Chen, Y. T., High photosensitivity and broad spectral response of multi-layered germanium sulfide transistors. Nanoscale 2016, 8 (4), 2284-92.
162.Buscema, M.; Island, J. O.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S.; Castellanos-Gomez, A., Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 2015, 44 (11), 3691-718.
163.Hu, P.; Wang, L.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X.; Wen, Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan, D. B.; Xiao, K., Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett. 2013, 13 (4), 1649-54.
164.Kumarasinghe, C. S.; Premaratne, M.; Bao, Q.; Agrawal, G. P., Theoretical analysis of hot electron dynamics in nanorods. Sci. Rep. 2015, 5, 12140.
165.Mohiuddin, T.; Lombardo, A.; Nair, R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D.; Galiotis, C.; Marzari, N., Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Physical Review B 2009, 79 (20), 205433.
166.Huang, M.; Yan, H.; Chen, C.; Song, D.; Heinz, T. F.; Hone, J., Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proceedings of the National Academy of Sciences 2009, 106 (18), 7304-7308.
167.Shi, H.; Pan, H.; Zhang, Y.-W.; Yakobson, B. I., Quasiparticle band structures and optical properties of strained monolayer MoS 2 and WS 2. Physical Review B 2013, 87 (15), 155304.
168.Scalise, E.; Houssa, M.; Pourtois, G.; Afanas’ev, V.; Stesmans, A., Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS 2. Nano Research 2012, 5 (1), 43-48.
169.Li, T., Ideal strength and phonon instability in single-layer MoS 2. Physical Review B 2012, 85 (23), 235407.
170.Yue, Q.; Kang, J.; Shao, Z.; Zhang, X.; Chang, S.; Wang, G.; Qin, S.; Li, J., Mechanical and electronic properties of monolayer MoS2 under elastic strain. Physics Letters A 2012, 376 (12-13), 1166-1170.
171.Pan, H.; Zhang, Y.-W., Tuning the electronic and magnetic properties of MoS2 nanoribbons by strain engineering. The Journal of Physical Chemistry C 2012, 116 (21), 11752-11757.