研究生: |
廖信發 Liao Hsin-fa |
---|---|
論文名稱: |
超小型塑膠閃爍光纖偵檢器之研製 - 小照野放射治療上的應用 The study of the miniature plastic scintillating fiber detector — A dosimeter for small field radiotherapy application |
指導教授: |
袁立基
Yuan Liq-Ji |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 閃爍 、光纖 、劑量率 、半影區 |
外文關鍵詞: | scintillation, optic fiber, dose rate, penumbra |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的旨在研製一超小型塑膠閃爍光纖的輻射量測系統,利用閃爍光纖受輻射照射後釋出螢光,度量其發光強度用以對輻
射進行劑量率的評估。
工作的主要內容包括(1)開發一高阻抗高放大倍率之放大器,將光電轉換後之微弱訊號放大成可計讀之電壓輸出。(2)研製輻射偵測及光電轉換組件,此組件係採用Bicron公司BCF-20型綠色塑膠閃爍光纖1 mm × 5 mm L,耦合於10 m長之一般塑膠光纖上,分別構成輻射偵測之探針及光訊號之傳導,光電轉換則分別以光電倍增管或
光二極體為之。
實驗共以兩組分別進行,第一組係以光電倍增管為光電轉換之偵測組件,第二組則以光二極體為光電轉換之偵測組件。每組又分為偵測探針包以純金及未包金者各一。實驗結果顯示包純金者與未包金者在偵測靈敏度上並未發現有顯著的差異。各組可測量劑量率的範圍分別(1)採用光電倍增管者為350 cGy/min以內,(2)採用光二極體者為5 Gy/min以上。
在小照野射束水假體內進行測試發現,此開發之系統較游離腔在半影區不論於空間解析度上及劑量梯度上均有更加的辨識能力。
The purpose of this study is trying to develop a miniature plastic scintillation fiber detecting system used for radiation measurement. The fluorescence light released promptly from the scintillator under the ionizing radiation exposed, therefore, the dose rate can be evaluated by its
intensity of the light emitted.
The work of the developed detecting system consists mainly (1) to develop a high impendence of high amplification current amplifier, which could convert the very low current signal into readable voltage output, and (2) to construct the detector of opto-electric device, which the Bicron type BCF-20 plastic scintillating fiber of 1 mm × 5 mm L was used as the detection probe to integrate with a 10 m long plastic optic fiber as the light transmission medium, and the opto-electric converting device was
either by a photomultiplier tube or a photodiode.
The experiments divided into two groups. One has photomultiplier-coupled of optic fiber system and the other has photodiode-coupled one. Of the group content two different type probe, one was clad with thin sheet of pure gold and the other was bared. The results show the detection sensitivity were no significantly difference between the gold clad and bared one. The photomultiplier-coupled device is suitable to determine the dose rate below 350 cGy/min, and the photodiode-coupled one is suitable only for the dose rate above 5 Gy/min.
In small field cone beam experiments, which carried out of the dose profile measurements of different depth in water phantom. Our developed system shows much better performance than the conventional ion chamber, especially in the region of penumbra not only has excellent
spatial resolution but also has accurate of dose gradient.
1. Heinrich Leutz, Nucl. Instr. and Meth. A 364, (1995) 422-448.
2. S. R. Borenstein et al., IEEE Trans. Nucl. Sci. NS-29, (1982) 402.
3. D. M. Potter et al., IEEE Trans. Nucl. Sci. NS-29, (1982) 421.
4. R. Ruchti et al., IEEE Trans. Nucl. Sci. NS-30, (1983) 40.
5. L. R. Allemand et al., Nucl. Instr. and Meth. 225, (1984) 522.
6. H. Blumenfeld et al., Nucl. Instr. and Meth. 225, (1984) 518.
7. A. Bross, Nucl. Instr. and Meth. A 247, (1986) 319.
8. A. Artamonov et al., Nucl. Instr. and Meth. A 300, (1990) 53.
9. J. Bahr et al., Nucl. Instr. and Meth. A 306, (1991) 169.
10. C. Cianfarini et al., CERN-PPE, (1993) 93-135.
11. M. Atkinson et al., Nucl. Instr. and Meth. A 254, (1987) 500.
12. C. D’Ambrosio et al., Nucl. Instr. and Meth. A 306, (1991) 549.
13. C. Angelini et al., Nucl. Instr. and Meth. A 295, (1990) 299.
14. C. Angelini et al., Nucl. Instr. and Meth. A 281, (1989) 50.
15. E. J. Friebele et al., J. Appl. Phys. 45(8), (1974) 3424-3428.
16. F. J. Feigl et al., J. phys. Chem. Solid Pergamon Press 31, (1970)
575-596.
17. D. L. Griscom et al., J. Appl. Phys. 54(7), (1983).
18. E. J. Friebele et al., IEEE Trans. Nucl. Sci. NS-25, (1978).
19. J. Klarmann et al., Nucl. Phys. B (Proc. Suppl.), 61B, (1998) 378-383.
20. A. Ikhlef et al., Nucl. Instr. and Meth. A 442, (2000) 428-432.
21. J. M. Ryan et al., Nucl. Instr. and Meth. A 422, (1999) 49-53.
22. D. Letourneau, et al., Med. Phys. 26, (1999) 2555-2561.
23. A. S. Beddar, Radiotherapy and Oncology, 37, (1995) 28.
24. Heitler, “The quantum theory of radiation”, 3rd Ed., New York,
(1984).
25. Joseph Agassi, “Radiation theory and the quantum revolution”, Basel,
Boston, (1993).
26. Ralph S. Becker, “Theory and Interpretation of Fluorescence and
Phosphorescence”, John Wilson & Sons, (1969).
27. John Wilson and John Hawkes, “Optoelectronics: an introduction”, 3rd
Ed., Prentice-Hall, (1998).
28. Glenn F. Knoll, “Radiation Detection and Measurement”, 3rd Ed.,
John Wiley & Sons, Inc., (2000).
29. Nicholas Tsoulfanidis, “Measurement and Detection of Radiation”,
Hemisphere Publishing Corp., (1983).
30. Max Ming-Kang Liu, “Principles and applications of optical
communications”, Irwin, (1996).
31. J. F. Keithley, J. R. Yeager, and R. J. Erdman, “Low Level
Measurements: For effective low current, low voltage, and high
impedance measurements”, Keithley, (1984) 37-43.
32. J. F. Keithley, J. R. Yeager, and R. J. Erdman, “Low Level
Measurements: For effective low current, low voltage, and high
impedance measurements”, Keithley, (1984) 19-30.
33. Adel S. Sedra and Kenneth C. Smith, “Microelectronic Circuit”, 4th
Ed., Oxford, (1998) 101-108.
34. A. S. Beddar, et al., Phys. Med. Biol. 37, (1992) 1883-1900.
35. S F de Boert, et al., Phys. Med. Biol. 38, (1993) 945-958.
36. A. S. Beddar, et al., Phys. Med. Biol. 37, (1992) 925-935.
37. M. R. Arnfield, et al., IEEE Trans. Nucl. Sci. 43, (1996) 2077-2084.
38. T. Okusawa, et al., Nucl. Instr. and Meth. A 459 (2001) 440.