簡易檢索 / 詳目顯示

研究生: 方秀英
Emily Fang
論文名稱: 永磁直流無刷電動機驅動器之鎖相迴路輔助可調速控制器
A PHASE-LOCKED LOOP ASSISTED ADJUSTABLE SPEED CONTROLLER FOR PMBLDCM DRIVES
指導教授: 潘晴財
Ching-Tsai Pan
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 116
中文關鍵詞: 永磁無刷電動機電流控制可調速速度控制鎖相迴路
外文關鍵詞: permanent-magnet brushless motors, current control, adjustable speed control, motor drives, phase-locked loop
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在全球先進國家中,大部分之電能有相當高比例消耗於商用、居家或工業上之通風及空調設備中,而眾所皆知經由適切地減低風扇或壓縮機之運轉速度,可大幅降低電能之消耗,因此運用可調速速度控制器於通風或空調系統中便能有效地節省電能,提高電能之使用效率。另一方面由於永磁直流無刷電動機以其容易控制、壽命長,再加上製造上應用了擁有高磁能積之強磁石,例如:釹鐵硼強磁石,使得永磁直流無刷電動機另具有高轉矩、高效率及高功率密度之特性,因此被廣範地應用在各個領域。事實上,由於小型化,輕便性之需求導向,目前永磁直流無刷電動機已快速取代傳統感應電動機在可調速空調及壓縮機上之應用,然而在優良之產品設計上,仍必須考量因電動機轉矩脈動所造成之運轉噪音,且儘量尋求在不增加控制器額外製造成本下加以改善。本論文之主要目的即在設計ㄧ低成本、低噪音、高效率且具優良動態運轉特性之三相永磁直流無刷電動機驅動器。本論文之主要貢獻摘要如下:
    首先提出一等效於直流有刷電動機之三相永磁直流無刷電動機電路模型,由此推導出之電路模型,將可大幅簡化三相永磁直流無刷電動機之控制器設計並使控制器易於積體電路化。接著本論文提出一先進等效電樞電流感測,合成及三模態控制架構之電流控制器,並將變頻器之脈波寬度調變策略巧妙地整合入所提出之電流控制器中。如此不但完整之電動機三相電樞電流可詳實地被偵測到,而且在硬體架構上也更加簡潔,相對降低硬體製作成本,且改善整體控制器之動態運轉性能。於不同之操作頻率下,因變頻器換相所伴隨之轉矩脈動皆可自然的被抑制。
    隨後本論文亦提出一型三相永磁直流無刷電動機驅動器之鎖相迴路輔助式可調速速度控制器,以獲取快速之暫態響應特性,及高精度之速度控制。再者,控制器中參數之解析函數亦於論文中推導獲得,使得控制器之設計變得更為簡易。最後,實際針對永磁直流無刷電動機驅動器製作一硬體電路雛型來驗證本論文所提之可調速速度控制器之可行性及有效性。


    Large portion of electrical energy production in developed countries is consumed for ventilation and air conditioning in commercial and residential areas and for similar applications in the industrial sphere. Also it is well-known that adjustable speed drives (ASD) can be used in these fields to achieve great energy saving effect for partial loads by lowering motor speed. On the other hand, permanent-magnet brushless dc (PMBLDC) motors have been used in wide applications for their benefits of easy speed control and long life time expectation. Moreover, by using high energy product magnets, such as neodymium-iron-boron (NdFeB), a PMBLDC motor can provide rather high power density, high torque and high efficiency. In fact, due to the necessity of small volume and weight, PMBLDC motors are now replacing rapidly the traditional induction motors for variable frequency control of air conditioning units and compressors. However, the resulting mechanical noise due to the torque ripples of the PMBLDC motor remains to be further improved without increasing too much extra cost. Therefore, the objective of this dissertation is focused on further improvement of the dynamic response and reduction of the drive cost.
    Major contributions of this dissertation can be outlined briefly as follows. First, an equivalent dc brush motor model is proposed for the concerned three-phase PMBLDC motors model to simplify greatly the drive control and enable the integration of the controller into single chip. Second, for the current control loop, a low cost current sensing technique is proposed to get complete information of the motor current and a novel tri-mode control is presented to integrate with the current sensing technique to achieve instantaneous toque response and meanwhile minimizing the commutation torque ripples automatically over the whole speed range. Third, for the speed control loop, a phase-locked loop (PLL) assisted speed controller is proposed for the PMBLDC motor drives to achieve both fast transient response and high speed control accuracy. Furthermore, closed form expressions of the proposed controller parameters are also provided rendering the design of the proposed control rather trivial. Fourth, a prototype is also implemented and experimental results indeed validate the feasibility and effectiveness of the proposed adjustable speed drive.

    CHINESE ABSTRACT I ABSTRACT III ACKNOWLEDGEMENTS V CONTENTS VI LIST OF FIGURE CAPTIONS IX LIST OF TABLE CAPTIONS XIV 1. INTRODUCTION 1 1.1 Motivation 1 1.2 Literature Survey 1 1.3 Contributions of the Dissertation 5 1.4 Outline of the Contents 8 2. DERIVATION OF EQUIVALENT DC BRUSH MOTOR MODEL OF THE PMBLDCM FOR SYSTEM INTEGRATION 10 2.1 Introduction 10 2.2 Review of the Conventional Mathematic Models 10 2.3 Derivation of the Proposed Equivalent DC Brush Motor Model 16 3. TRI-MODE CONTROL AND SYNTHESIS OF THE EQUIVALENT ARMATURE CURRENT FOR REDUCING TORQUE RIPPLES .22 3.1 Introduction 22 3.2 Sensing of the Complete Three-Phase Currents of PMBLDC Motors 23 3.3 The Proposed Tri-Mode Control of the Equivalent Armature Current 28 3.4 Synthesis of the Equivalent Armature Current of PMBLDC Motors 36 3.5 Simulation Results of the Proposed Tri-Mode Equivalent Armature Current Controlled PMBLDC Motor System 37 4. THE PROPOSED PLL ASSISTED ADJUSTABLE SPEED CONTROL STRATEGY 49 4.1 Introduction 49 4.2 The Proposed PLL Assisted Speed Control Strategy 50 4.3 Derivation of Closed Form Expressions of and Parameters of the PI Controller 54 4.4 Stability Analysis of the Closed-Loop System 57 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 64 5.1 Introduction 64 5.2 Description of the Test Drive System 65 5.3 Implementation of the Proposed Drive System 70 5.4 Simulation and Experimental Results 85 6. CONCLUSIONS 96 REFERENCES 100 APPENDIX A THE EQUIVALENT DC BRUSH MOTOR MODEL OF THE INTERIOR PMBLDC MOTOR 106 APPENDIX B THE PMBLDC MOTOR 112

    [1] M. Naidu, T. W. Nehl, S. Gopalakrishnan, and L. Wurth, “Keeping Cool While Saving Space and Money: A Semi-Integrated, Sensorless PM Brushless Drive for a 42-V Automotive HVAC Compressor,” IEEE Ind. Appl. Magazine, vol. 11, no. 4, pp. 20-28, July/Aug. 2005.
    [2] A. Lelkes and M. Bufe, “BLDC Motor for Fan Application with Automatically Optimized Commutation Angle,” in 2004 Proc. IEEE PESC Conf., pp. 2277-2281.
    [3] J. Goetz, W. Hu, and J. Milliken, “Sensorless Digital Motor Controller for High Reliability Applications,” in 2006 Proc. IEEE APEC Conf., pp. 1645-1650.
    [4] S. Rajagopalan, J. M. Aller, J. A. Restrepo, T. G. Habetler, and R. G. Harley, “Analytical-Wavelet-Ridge-Based Detection of Dynamic Eccentricity in Brushless Direct Current (BLDC) Motors Functioning Under Dynamic Operating Conditions,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1410-1419, June 2007.
    [5] C. Cavallaro, A. O. D. Tommaso, R. Miceli, A. Raciti, G. R. Galluzzo, and M. Trapanese, “Efficiency Enhancement of Permanent-Magnet Synchronous Motor Drives by Online Loss Minimization Approaches,” IEEE Trans. Ind. Electron., vol. 52, no. 4, pp. 1153-1160, Aug. 2005.
    [6] C. H. Chen and M. Y. Cheng, “Implementation of a Highly Reliable Hybrid Electric Scooter Drive,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2462-2473, Oct. 2007.
    [7] Z. Y. Pan and F. L. Luo, “Steady State Reference Current DeterminationTechnique for Brushless DC Motor Drive System,” IEE Proc.-Electr. Power Appl., vol. 152, no. 6, November 2005, pp. 1585-1594.
    [8] J. K. Seok, K. T. Kim, and D. C. Lee, “Automatic Mode Switching of P/PI Speed Control for Industry Servo Drives Using Online Spectrum Analysis of Torque Command,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2642-2647, Oct. 2007.
    [9] Y. Zhang, C. M. Akujuobi, W. H. Ali, C. L. Tolliver and L. S. Shieh, “Load Disturbance Resistance Speed Controller Design for PMSM,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1198-1207, Aug. 2006.
    [10] A. W. Moore, “Phase-Locked Loops for Motor-Speed Control,” IEEE Spectrum, pp. 61-67, April 1973.
    [11] J. Tal, “Speed Control by Phase-Locked Servo Systems,” IEEE Trans. Ind. Electronics and Control. Instrumentation, vol. IECI-24, no.1, pp.118-125, February 1977.
    [12] P. C. Sen and M. L. Macdonald, “Stability Analysis of Induction Motor Drives Using Phase-Locked Loop Control System,” IEEE Trans. Ind. Electronics and Control Instrumentation, vol. IECI-27, no.3, pp.147-155, august 1980.
    [13] A. Takano, “Quick-Response Torque-Controlled Induction Motor Drives Using Phase-Locked Loop Speed Control with Disturbance Compensation,” IEEE Trans. Ind. Electronics, vol. 43, no. 6, pp.640-646, December 1996.
    [14] G. C. Hsieh and J. C. Hung, “Phase-Locked Loop Techniques-A Survey,” IEEE Trans. Ind. Electron., vol. 43, no. 6, pp. 609-615, Dec. 1996.
    [15] E. S. N. Prasad, G. K. Dubey and S. S. Prabhu, “High-Performance DC Motor Drive with Phase-Locked Loop Regulation,” IEEE Trans. Ind. Appl., vol. IA-21, no.1, pp.192-201, January/February 1985.
    [16] R. E. Best, Phase-Locked Loop Design, Simulation & Applications. The McGraw-Hall International, Taipei, 2003, pp.109-114.
    [17] S. Pavljasevic and F. Dawson, “Synchronization to Disturbed Utility-Network Signals Using a Multirate Phase-Locked Loop,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1410-1417, Oct. 2006.
    [18] L. G. B. Rolim, D. R. da Costa Jr., and M. Aredes, “Analysis and Software Implementation of a Robust Synchronizing PLL Circuit Based on the pq Theory,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1919-1926, Dec. 2006.
    [19] R. Krishnan, “A Novel Single Switch Per Phase Converter Topology for Four-Quadrant PM Brushless DC Motor Drive,” IEEE Trans. Ind. Appl., vol. 33, no. 5, pp. 1154-1161, Sept./Oct. 1997.
    [20] R. Krishnan, Electric Motor Drives Modeling, Analysis, and Control. NJ: Prentice-Hall, ISBN 0-13-093067-9, 2001.
    [21] J. Rodriguez, J. Pontt, C. A. Silva, P. Correa, P. Lezana, P. Cortes, and U. Ammann, “Predictive Current Control of a Voltage Source Inverter,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 495-503, Feb. 2007.
    [22] International Rectifier, “IR2175(S) linear circuit sensing IC,” Data sheet, NO.PD60208-A.
    [23] Y. Zhang, R. Zane, A. Prodic, R. Erickson, and D. Maksimovic, “Online Calibration of MOSFET On-State Resistance for Precise Current Sensing,” IEEE. Power Electronic Letters, vol. 2, pp. 100-103, Sep. 2004.
    [24] Becerra, T. M. Jahns, and M. Ehsani, “Four Quadrant Sensorless Brushless ECM Drive,” in Proc. IEEE Appl. Power Electron. Conf. and Expo., 1991, pp. 202–209.
    [25] T. M. Jahns, R. C. Becerra, and M. Ehsani, “Integrated Current Regulation for a Brushless ECM Drive,” IEEE Trans. Power Electron., vol. 6, no. 1, pp. 118–126, Jan. 1991.
    [26] R. C. Becerra, M. Ehsani, and T. M. Jahns, “Four Quadrant Brushless ECM Drive with Integrated Current Regulation,” IEEE Trans. Ind. Appl., vol. 28, no. 4, pp. 833-841, July/Aug. 1992.
    [27] S. R. MacMinn, W. J. Rzesos, P. M. Szczesny, and T. M. Jahns, “Application of Sensor Integration Techniques to Switched Reluctance Motor Drives,” IEEE Trans. Ind. Appl., vol. 28, no. 6, pp. 1339–1344, Nov./Dec. 1992.
    [28] S. Chakrabarti, T. M. Jahns, and R. D. Lorenz, “A Current Reconstruction Algorithm for Three-Phase Inverters Using Iintegrated Ccurrent Sensor as Low Side Switches,” in Proc. IEEE Ind. Appl. Soc. Annu. Meeting, Salt Lake City, UT, Oct. 2003, pp. 925–932.
    [29] Y. Xiao, J. Cao, J. D. Chen, and K. Spring, “Current Sensing Trench Power MOSFET for Automotive Applications,” IEEE. Applied Power Electronics Conf. Exposition, vol. 2, March 2005, pp. 766-770.
    [30] S. Chakrabarti, T. M. Jahns, and R. D. Lorenz, “Current Regulation for Surface Permanent-Magnet Synchronous Motor Drives Using Integrated Current Sensors in Low-Side Switches,” IEEE Trans. Ind. Appl., vol. 42, no. 4, pp. 1080-1091, July/Aug. 2006.
    [31] S. Chakrabarti, T. M. Jahns, and R. D. Lorenz, “A Current Control Technique for Regulation for Induction Machine Drives Using Integrated Pilot Current Sensors in the Low-Side Switches,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 272-281, Jan. 2007.
    [32] Becerra, T. M. Jahns, and M. Ehsani, “Four Quadrant Ssensorless Brushless ECM Drive,” in Proc. IEEE Appl. Power Electron. Conf. and Expo., 1991, pp. 202–209.
    [33] T. M. Jahns, R. C. Becerra, and M. Ehsani, “Integrated Current Regulation for a Brushless ECM Drive,” IEEE Trans. Power Electron., vol. 6, no. 1, pp. 118–126, Jan. 1991.
    [34] R. C. Becerra, M. Ehsani, and T. M. Jahns, “Four Quadrant Brushless ECM Drive with Integrated Current Regulation,” IEEE Trans. Ind. Appl., vol. 28, no. 4, pp. 833-841, July/Aug. 1992.
    [35] W. C. Lee, D. S. Hyun, and T. K. Lee, “Novel Control Method for Three Phase PWM Rectifiers Using a Single Current Sensor,” IEEE Trans. Power Electron., vol. 15, no. 5, pp. 861–870, Sep. 2000.
    [36] T. S. Kim, S. C. Ahn, and D. S. Hyun, “A New Current Control Algorithm for Torque Ripple Reduction of BLDC Motors,” IECOM’01: the 27th annual conference of the IEEE Industrial Electronics Society, 2001, pp.1521-1526.
    [37] T. M. Wolbank and P. Macheiner, “An Improved Observer-Based Current Controller for Inverter Fed AC Machines with Single DC-Link Current Measurement,” in Proc. PESC, Cairns, Australia, Jun. 23–27, 2002, pp. 1003–1008.
    [38] J. H. Song and Ick Choy, “Commutation Torque Ripple Reduction in Brushless DC Motor Drives Using a Single DC Current Sensor,” IEEE Trans. on Power Electronics, vol. 19, no. 2, pp. 312-319, March 2004.
    [39] M. Bertoluzzo, G. Buja, and R. Menis, “Direct Torque Control of an Induction Motor Using a Single Current Sensor,” IEEE Trans. Ind. Electron., vol. 53, no. 3, pp. 778-784, June 2006.
    [40] H. Kim and T. M. Jahns, “Phase Current Reconstruction for AC Motor Drives Using a DC Link Single Current Sensor and Measurement Voltage Vectors,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1413–1419, Sep. 2006.
    [41] H. Kim and T. M. Jahns, “Current Control for AC Motor Drives Using a Single DC-Link Current Sensor and Measurement Voltage Vectors,” IEEE Trans. Ind. Appl., vol. 42, no. 6, pp. 1539-1547, Nov./Dec. 2006.
    [42] R. Dubey, P. Agarwal, and M. K. Vasantha, “Programmable Logic Devices for Motion Control-A Review,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 559-566, Feb. 2007.
    [43] E. Monmasson and M. N. Cirstea, “FPGA Design Methodology for Industrial Control Systems – A Review,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 1824-1842, Aug. 2007.
    [44] M. W. Naouar, E. Monmasson, A. A. Naassani, I. S. Belkhodja, and N. Patin, “FPGA-Based Current Controllers for AC Machine Drives – A Review,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 1907-1925, Aug. 2007.
    [45] A. Zaki and S. Ibrahim, “Modeling and Analysis of PM Brushed DC Motor Using FEM,” European Conference on Power Electr. and Appl., Sept. 2005, pp. 1-6.
    [46] P. Pillay and R. Krishnan, “Modeling of Permanent Magnet Motor Drives,” IEEE Trans. Ind. Electron., vol. 35, no. 4, pp. 537-541, November 1988.
    [47] P. Pillay and R. Krishnan, “Modeling, Simulation, and Analysis of Permanent-Magnet Motor Drives, Part II: The Brushless DC Motor Drive,” IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 274-279, March/Aprl 1989.
    [48] I. L. Chien and P. S. Fruehauf, “Consider IMC Tuning to Improve Controller Performance,” Chem. Eng. Progress, vol. 86, no. 10, pp. 33-41, Oct., 1990.
    [49] Qing-Guo Wang, Qiang Bi, and Yong Zhang, “Partial Internal Model Control,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 976-982, Oct. 2001.
    [50] L. Harnefors and Hans-Peter Nee, “Model-Based Current Control of AC Machines Using the Internal Model Control Method,” IEEE Trans. Ind. Electron., vol. 34, no. 1, pp. 133-141, Jan./Feb. 1998.
    [51] J. Golten and A. Verwer, Control System Design and Simulation. New York: McGraw-Hill, 1992, pp.356-359.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE